34 research outputs found

    Identification and differential production of ubiquinone-8 in the bacterial predator Bdellovibrio bacteriovorus

    Get PDF
    Bdellovibrio bacteriovorus 109J, a predatory bacterium with potential as a bacterial control agent, can exist in several lifestyles that differ both in predatory capacity and color. We determined that levels of ubiquinone-8 contribute to the distinctive but variable yellow color of different types of Bdellovibrio cells. Steady-state ubiquinone-8 concentrations did not differ markedly between conventional predatory and host-independent B. bacteriovorus despite upregulation of a suite of ubiquinone-8 synthesis genes in host-independent cells. In contrast, in spatially organized B. bacteriovorus films, the yellow inner regions contain significantly higher ubiquinone-8 concentrations than the off-white outer regions. Correspondingly, RT-PCR analysis reveals that the inner region, previously shown to consist primarily of active predators, clearly expresses two ubiquinone biosynthesis genes, while the outer region, composed mainly of quiescent or stalled bdelloplasts, expresses those genes weakly or not at all. Moreover, B. bacteriovorus cells in the inner region of week-old interfacial films, which are phenotypically attack-phase, have much higher UQ8 levels than regular attack-phase bdellovibrios, most likely because their “trapped” state prevents a high expenditure of energy to power flagellar motion

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Aqueous alteration processes in Jezero crater, Mars—implications for organic geochemistry

    Get PDF
    The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Probing DNA charge transport with metallointercalators

    No full text
    A wide range of experiments have emerged recently regarding charge transport through DNA, including spectroscopic studies of rates of DNA-mediated electron transfer and biochemical studies of DNA base oxidation over long distances. These experiments have, in turn, led to new proposals about the way in which charge moves through DNA and have prompted the consideration of physiological roles for DNA electron transfer. Importantly, metallointercalators have been key players in many of these experiments. Metallointercalators provide critical probes to examine the migration of charge through the DNA base stack

    Oxidative Charge Transfer To Repair Thymine Dimers and Damage Guanine Bases in DNA Assemblies Containing Tethered Metallointercalators

    No full text
    Potent oxidants which intercalate in DNA serve as tools to probe DNA-mediated electron-transfer reactions. A photoexcited rhodium intercalator, Rh(phi)_2DMB^(3+) (phi = 9,10-phenanthrenequinone diimine and DMB = 4,4‘-dimethyl-2,2‘-bipyridine), tethered to DNA, promotes both oxidative damage to 5‘-GG-3‘ doublets in DNA and the repair of thymine dimers from a remote site on the DNA duplex. DNA-mediated repair of a thymine dimer lesion by charge transfer from the tethered rhodium intercalator is quantitative, albeit with low photoefficiency, occurs in an intraduplex reaction over long range (36 Å), and requires that the intervening bases be paired. When both oxidative reactions, repair and oxidative damage, are monitored on the same duplex, competition is evident; the presence of both a 5‘-GG-3‘ site and the thymine dimer diminished the dimer repair efficiency by 20−40% and decreased damage at the 5‘-GG-3‘ sites 2-fold compared to similar sequences lacking either the guanine doublet or thymine dimer, respectively. In addition to damage at the 5‘-G of 5‘-GG-3‘ sites, we also observe oxidation at the 3‘-G of the 5‘-GTTG-3‘ tetrad only in the presence of thymine dimer. Overall, the yield of repaired thymine strand was at least 10 times higher than the yield of oxidized guanine in the same sequences. While the 5-GG-3‘ may represent the thermodynamically favored site for oxidative reaction, repair of the thymine dimer appears to be kinetically more favorable. Dipyridophenanzine (dppz) complexes of ruthenium(III), less potent oxidants which intercalate in DNA, oxidize 5‘-GG-3‘ doublets efficiently but cannot trigger the repair of the thymine dimer lesion. Oxidative damage to DNA from a distance, mediated by the DNA base pair stack, can, however, be utilized to probe the disruption in the base stack generated by the thymine dimer. The presence of the dimer does not diminish oxidation by a Ru(III) intercalator at a distal guanine doublet, suggesting that the disruption caused by the dimer does not block charge transfer through the DNA duplex. DNA-mediated electron-transfer reactions of metallointercalators therefore serve to illustrate important aspects of radical migration and its consequence with respect to reactions at a distance through the DNA base pair stack

    Oxidative Charge Transport through DNA in Nucleosome Core Particles

    Get PDF
    Eukaryotic DNA is packaged into nucleosomes, made up of 146 bp of DNA wrapped around a core of histone proteins. We used photoexcited rhodium intercalators to explore DNA charge transport within these assemblies. Although histone proteins inhibit intercalation of the rhodium complex within the core particle, they do not prevent 5â€Č-GG-3â€Č oxidation, the signature of oxidative charge transport through DNA. Moreover, using rhodium intercalators tethered to the 5â€Č terminus of the DNA, we found that guanine bases within the nucleosome can be oxidized from a distance of 24 bp. Histone binding did not affect the pattern and extent of this oxidation. Therefore, although the structure of the nucleosome core particle generally protects DNA from damage by solution-borne molecules, packaging within the nucleosome does not protect DNA from charge transfer damage through the base pair stack

    Damage to DNA by long-range charge transport

    No full text
    Photochemical reactions on DNA assemblies containing tethered photooxidants, particularly metallointercalating photooxidants, have been critical in establishing that permanent damage to DNA bases can be generated as a result of radical migration from a remote site on the DNA duplex. Induction of a 1-electron deficiency in the oxidant attached covalently to the DNA remote from the oxidizable site leads to this “chemistry at a distance,” caused by efficient charge transport through the DNA base pair stack. Double helical DNA may be unique as a polymeric assembly in solution because of this interior core of stacked aromatic heterocyclic base pairs. Similarly stacked solid-state materials tend to be conducting along the stacking direction. This chapter describes the design and construction of DNA assemblies used to probe long-range oxidative damage in DNA. It also includes methodology for the oxidative repair of a thymine dimer lesion in DNA, as this “chemistry at a distance” also depends on long-range charge transfer through the DNA base pair stack

    Evidence for DNA Charge Transport in the Nucleus

    No full text
    Oxidative damage to DNA bases in isolated HeLa nuclei occurs upon treatment with rhodium intercalators and photoactivation. Oxidation occurs preferentially at the 5‘-guanine of 5‘-GG-3‘ sites, indicative of base damage by DNA-mediated charge transfer chemistry. Moreover, oxidative damage occurs at protein-bound sites which are inaccessible to rhodium. Thus, on transcriptionally active DNA within the cell nucleus, DNA-mediated charge transport leads to base damage from a distance, and direct interaction of an oxidant is not necessary to generate a base lesion at a specific site. These observations require consideration in designing new chemotherapeutics and in understanding cellular mechanisms for DNA damage and repair
    corecore