219 research outputs found

    Genetically complex epilepsies, copy number variants and syndrome constellations

    Get PDF
    Epilepsy is one of the most common neurological disorders, with a prevalence of 1% and lifetime incidence of 3%. There are numerous epilepsy syndromes, most of which are considered to be genetic epilepsies. Despite the discovery of more than 20 genes for epilepsy to date, much of the genetic contribution to epilepsy is not yet known. Copy number variants have been established as an important source of mutation in other complex brain disorders, including intellectual disability, autism and schizophrenia. Recent advances in technology now facilitate genome-wide searches for copy number variants and are beginning to be applied to epilepsy. Here, we discuss what is currently known about the contribution of copy number variants to epilepsy, and how that knowledge is redefining classification of clinical and genetic syndromes

    Genetic heterogeneity in infantile spasms

    Get PDF
    Infantile spasms (IS) is a developmental and epileptic encephalopathy with heterogeneous etiologies including many genetic causes. Genetic studies have identified pathogenic variants in over 30 genes as causes of IS. Many of these genetic causes are extremely rare, with only one reported incidence in an individual with IS. To better understand the genetic landscape of IS, we used targeted sequencing to screen 42 candidate IS genes and 53 established developmental and epileptic encephalopathy genes in 92 individual with IS. We identified a genetic diagnosis for 7.6% of our cohort, including pathogenic variants in KCNB1 (n = 2), GNA01 (n = 1), STXBP1 (n = 1), SLC35A2 (n = 1), TBLIXR1 (n = 1), and K1F1A (n = 1). Our data emphasize the genetic heterogeneity of IS and will inform the diagnosis and management of individuals with this devastating disorder.Peer reviewe

    Not all SCN1A epileptic encephalopathies are Dravet syndrome: Early profound Thr226Met phenotype.

    Get PDF
    OBJECTIVE: To define a distinct SCN1A developmental and epileptic encephalopathy with early onset, profound impairment, and movement disorder. METHODS: A case series of 9 children were identified with a profound developmental and epileptic encephalopathy and SCN1A mutation. RESULTS: We identified 9 children 3 to 12 years of age; 7 were male. Seizure onset was at 6 to 12 weeks with hemiclonic seizures, bilateral tonic-clonic seizures, or spasms. All children had profound developmental impairment and were nonverbal and nonambulatory, and 7 of 9 required a gastrostomy. A hyperkinetic movement disorder occurred in all and was characterized by dystonia and choreoathetosis with prominent oral dyskinesia and onset from 2 to 20 months of age. Eight had a recurrent missense SCN1A mutation, p.Thr226Met. The remaining child had the missense mutation p.Pro1345Ser. The mutation arose de novo in 8 of 9; for the remaining case, the mother was negative and the father was unavailable. CONCLUSIONS: Here, we present a phenotype-genotype correlation for SCN1A. We describe a distinct SCN1A phenotype, early infantile SCN1A encephalopathy, which is readily distinguishable from the well-recognized entities of Dravet syndrome and genetic epilepsy with febrile seizures plus. This disorder has an earlier age at onset, profound developmental impairment, and a distinctive hyperkinetic movement disorder, setting it apart from Dravet syndrome. Remarkably, 8 of 9 children had the recurrent missense mutation p.Thr226Met

    The ClinGen Epilepsy Gene Curation Expert Panel—Bridging the divide between clinical domain knowledge and formal gene curation criteria

    Get PDF
    The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin

    Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery

    Get PDF
    Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and threematernally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins.We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such asmRNAexport, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in human

    Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy

    Get PDF
    Correction to: EMBO Mol Med (2015) 7: 1580–1594. DOI 10.15252/emmm.201505323 | Published online 27 November 2015 EMBO Molecular Medicine 2017 vol 9 No12: 1764.Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABA(A) and glycine receptors (GABA(A)Rs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild- type gephyrin leading to a marked decrease in GABA(A)R surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.Peer reviewe
    corecore