15 research outputs found

    KEu(MoO4)(2): Polymorphism, Structures, and Luminescent Properties

    Get PDF
    In this paper, with the example of two different polymorphs of KEu(MoO4)(2), the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A',A '') [(B',B '')O-4](m) is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 923-1203 K and ambient pressure: a low temperature anorthic alpha-phase and a monoclinic high temperature beta-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic beta-KEu(MoO4)(2) has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(alpha beta 0)00, a = 5.52645(4) angstrom, b = 5.28277(4) angstrom, c = 11.73797(8) angstrom, gamma = 91.2189(4)degrees, q = 0.56821(2)a*-0.12388(3)b*), whereas the anorthic alpha-phase is (3+1)-dimensional commensurately modulated (superspace group I (1) over bar(alpha beta gamma)0, a = 5.58727(22) angstrom, b = 5.29188(18)angstrom, c = 11.7120(4) angstrom, alpha = 90.485(3)degrees, beta = 88.074(3)degrees, gamma = 91.0270(23)degrees, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the alpha-phase, while a 3-dimensional Eu3+-framework is observed for the beta-phase structure. The luminescent properties of KEu(MoO4)(2) samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed

    KEu(MoO<sub>4</sub>)<sub>2</sub>: Polymorphism, Structures, and Luminescent Properties

    No full text
    In this paper, with the example of two different polymorphs of KEu­(MoO<sub>4</sub>)<sub>2</sub>, the influence of the ordering of the <i>A</i>-cations on the luminescent properties in scheelite related compounds (<i>A</i>′,<i>A</i>″)<sub><i>n</i></sub>[(<i>B</i>′,<i>B</i>″)­O<sub>4</sub>]<sub><i>m</i></sub> is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 923–1203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu­(MoO<sub>4</sub>)<sub>2</sub> has a (3+1)-dimensional incommensurately modulated structure (superspace group <i>I</i>2<i>/b</i>(αβ0)­00, <i>a</i> = 5.52645(4) Å, <i>b</i> = 5.28277(4) Å, <i>c</i> = 11.73797(8) Å, γ = 91.2189(4)<sup>o</sup>, <b>q</b> = 0.56821(2)<b>a</b>*–0.12388­(3)<b>b</b>*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group <i>I</i>1̅(αβγ)­0, <i>a</i> = 5.58727(22) Å, <i>b</i> = 5.29188(18)­Å, <i>c</i> = 11.7120(4) Å, α = 90.485(3)<sup>o</sup>, β = 88.074(3)<sup>o</sup>, γ = 91.0270(23)<sup>o</sup>, <b>q</b> = 1/2<b>a</b>* + 1/2<b>c</b>*). In both cases the modulation arises due to Eu/K cation ordering at the <i>A</i> site: the formation of a 2-dimensional Eu<sup>3+</sup> network is characteristic for the α-phase, while a 3-dimensional Eu<sup>3+</sup>-framework is observed for the <i>β-</i>phase structure. The luminescent properties of KEu­(MoO<sub>4</sub>)<sub>2</sub> samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed

    Crystal Structure and Luminescent Properties of R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm) Red Phosphors

    No full text
    The R<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> (R = rare earth elements) molybdates doped with Eu<sup>3+</sup> cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (α) and orthorhombic (β′) R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm; 0 ≤ <i>x</i> ≤ 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic β′-phases could be synthesized only by quenching from high temperature to room temperature for Gd<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> in the Eu<sup>3+</sup>-rich part (<i>x</i> > 1) and for all Sm<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> solid solutions. The transformation from the α-phase to the β′-phase results in a notable increase (∼24%) of the unit cell volume for all R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Sm, Gd) solid solutions. The luminescent properties of all R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm; 0 ≤ <i>x</i> ≤ 2) solid solutions were measured, and their optical properties were related to their structural properties. All R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm; 0 ≤ <i>x</i> ≤ 2) phosphors emit intense red light dominated by the <sup>5</sup>D<sub>0</sub>→​<sup>7</sup>F<sub>2</sub> transition at ∼616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO<sub>8</sub> to RO<sub>7</sub> for the α- and β′-modification, respectively. The Gd<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> solid solutions are the most efficient emitters in the range of 0 < <i>x</i> < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> for higher Eu<sup>3+</sup> concentrations (1.5 ≤ <i>x</i> ≤ 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet–visible–infrared regions of the EELS spectrum

    Crystal Structure and Luminescent Properties of R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm) Red Phosphors

    No full text
    The R<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> (R = rare earth elements) molybdates doped with Eu<sup>3+</sup> cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (α) and orthorhombic (β′) R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm; 0 ≤ <i>x</i> ≤ 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic β′-phases could be synthesized only by quenching from high temperature to room temperature for Gd<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> in the Eu<sup>3+</sup>-rich part (<i>x</i> > 1) and for all Sm<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> solid solutions. The transformation from the α-phase to the β′-phase results in a notable increase (∼24%) of the unit cell volume for all R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Sm, Gd) solid solutions. The luminescent properties of all R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm; 0 ≤ <i>x</i> ≤ 2) solid solutions were measured, and their optical properties were related to their structural properties. All R<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> (R = Gd, Sm; 0 ≤ <i>x</i> ≤ 2) phosphors emit intense red light dominated by the <sup>5</sup>D<sub>0</sub>→​<sup>7</sup>F<sub>2</sub> transition at ∼616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO<sub>8</sub> to RO<sub>7</sub> for the α- and β′-modification, respectively. The Gd<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> solid solutions are the most efficient emitters in the range of 0 < <i>x</i> < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm<sub>2–<i>x</i></sub>Eu<sub><i>x</i></sub>(MoO<sub>4</sub>)<sub>3</sub> for higher Eu<sup>3+</sup> concentrations (1.5 ≤ <i>x</i> ≤ 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet–visible–infrared regions of the EELS spectrum
    corecore