6 research outputs found

    Fatigue crack initiation and propagation in Cr-Mo Steel hydrogen storage vessels:Research on design for safe life

    No full text
    International standards and codes dedicated to design of pressure vessels are still unable to competitively ensure safe design and fitness for service of steel vessels for high pressure gaseous hydrogen. Emptying and shallow pressure cycles subject the material to hydrogen enhanced fatigue. A pre-normative project, MATHRYCE under the EU joint research program focused in this subject through material and component testing, analytical work, review of design methodologies and international collaboration. An easy to implement, safe and economically competitive vessel design methodology is targeted. Steps towards this goal were taken by deepening our understanding on hydrogen enhanced fatigue in different kinds of laboratory specimens and real vessels designed for hydrogen service at maximum 45 MPa pressure. This included cyclic pressure testing of artificially notched vessels both in hydrogen and inert environment. The effect of hydrogen pressure, frequency and mechanical loading parameters (ΔK, Sa) on fatigue crack initiation and propagation was analyzed. Attention was paid on the definition of “initiation” and influence of hydrogen on the relative parts of initiation and propagation on the fatigue life of a component. A good correlation between results with various test types was found. Particularly promising was the match between the measured — and estimated — crack growth rates in laboratory specimens and vessels. This supports our proposal for a safe design procedure based on crack growth and defect tolerant approach. Recommendations for implementation in a new international standard, on how to properly address hydrogen enhanced fatigue based on laboratory tests, were given and will be summarized in this presentation. Our results indicate that crack initiation from inclusions or other small microstructural features is not necessarily affected by hydrogen to a similar extent as crack growth, but when initiated, the remaining life may be short due to fast growth. This is challenging for design and inspection rules to allow economically competitive construction of hydrogen equipment without compromising safety.</jats:p

    The Deltah Lab, a New Multidisciplinary European Facility to Support the H2 Distribution & Storage Economy

    No full text
    The target for European decarburization encourages the use of renewable energy sources and H2 is considered the link in the global energy system transformation. So, research studies are numerous, but only few facilities can test materials and components for H2 storage. This work offers a brief review of H2 storage methods and presents the preliminary results obtained in a new facility. Slow strain rate and fatigue life tests were performed in H2 at 80 MPa on specimens and a tank of AISI 4145, respectively. Besides, the storage capacity at 30 MPa of a solid-state system, they were evaluated on kg scale by adsorption test. The results have shown the H2 influence on mechanical properties of the steel. The adsorption test showed a gain of 26% at 12 MPa in H2 storage with respect to the empty condition. All samples have been characterized by complementary techniques in order to connect the H2 effect with material properties

    Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    BackgroundTocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients.MethodsA multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival.ResultsIn the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6-24.0, P=0.52) and 22.4% (97.5% CI: 17.2-28.3, P&lt;0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline.ConclusionsTocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline.Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092)

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    corecore