9,045 research outputs found

    Enceladus: Cassini observations and implications for the search for life

    Get PDF
    Aims. The recent Cassini discovery of water vapor plumes ejected from the south pole of the Saturnian satellite, Enceladus, presents a unique window of opportunity for the detection of extant life in our solar system. Methods. With its significant geothermal energy source propelling these plumes >80 km from the surface of the moon and the ensuing large temperature gradient with the surrounding environment, it is possible to have the weathering of rocks by liquid water at the rock/liquid interface. For the cases of the putatively detected salt-water oceans beneath the ice crusts of Europa and Callisto, an isolated subsurface ocean without photosynthesis or contact with an oxidizing atmosphere will approach chemical equilibrium and annihilate any ecosystems dependent on redox gradients unless there is a substantial alternative energy source. This thermodynamic tendency imposes severe constraints on any biota that is based on chemical energy. On Enceladus, the weathering of rocks by liquid water and any concomitant radioactive emissions are possible incipient conditions for life. If there is CO, CO2 and NH3 present in the spectra obtained from the plume, then this is possible evidence that amino acids could be formed at the rock/liquid interface of Enceladus. The combination of a hydrological cycle, chemical redox gradient and geochemical cycle give favorable conditions for life. Results. We discuss the search for signatures of these species and organics in the Cassini UVIS spectra of the plume and implications for the possible detection of life

    Roles of binding elements, FOXL2 domains, and interactions with cJUN and SMADs in regulation of FSHβ.

    Get PDF
    We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter

    The impact of SuperB on flavour physics

    Full text link
    This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed comparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years.Comment: 20 pages, 6 figure

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.

    Get PDF
    There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH

    Discrete Model of Ideological Struggle Accounting for Migration

    Full text link
    A discrete in time model of ideological competition is formulated taking into account population migration. The model is based on interactions between global populations of non-believers and followers of different ideologies. The complex dynamics of the attracting manifolds is investigated. Conversion from one ideology to another by means of (i) mass media influence and (ii) interpersonal relations is considered. Moreover a different birth rate is assumed for different ideologies, the rate being assumed to be positive for the reference population, made of initially non-believers. Ideological competition can happen in one or several regions in space. In the latter case, migration of non-believers and adepts is allowed; this leads to an enrichment of the ideological dynamics. Finally, the current ideological situation in the Arab countries and China is commented upon from the point of view of the presently developed mathematical model. The massive forced conversion by Ottoman Turks in the Balkans is briefly discussed.Comment: 24 pages, with 5 figures and 52 refs.; prepared for a Special issue of Advances in Complex System

    Adipose-derived stem cell conditioned medium impacts asymptomatic peripheral neuromuscular denervation in the mutant superoxide dismutase (G93A) transgenic mouse model of amyotrophic lateral sclerosis

    Get PDF
    Background:Amyotrophic lateral sclerosis (ALS) is devastating, leading to paralysis and death. Disease onset begins pre-symptomatically through spinal motor neuron (MN) axon die-back from musculature at ∼47 days of age in the mutant superoxide dismutase 1 (mSOD1G93A) transgenic ALS mouse model. This period may be optimal to assess potential therapies. We previously demonstrated that post-symptomatic adipose-derived stem cell conditioned medium (ASC-CM) treatment is neuroprotective in mSOD1G93A mice. We hypothesized that early disease onset treatment could ameliorate neuromuscular junction (NMJ) disruption. Objective:To determine whether pre-symptom administration of ASC-CM prevents early NMJ disconnection. Methods:We confirmed the NMJ denervation time course in mSOD1G93A mice using co-labeling of neurofilament and post-synaptic acetylcholine receptors (AchR) by α-bungarotoxin. We determined whether ASC-CM ameliorates early NMJ loss in mSOD1G93A mice by systemically administering 200μl ASC-CM or vehicle medium daily from post-natal days 35 to 47 and quantifying intact NMJs through co-labeling of neurofilament and synaptophysin with α-bungarotoxin in gastrocnemius muscle. Results:Intact NMJs were significantly decreased in 47 day old mSOD1G93A mice (p < 0.05), and daily systemic ASC-CM prevented disease-induced NMJ denervation compared to vehicle treated mice (p < 0.05). Conclusions:Our results lay the foundation for testing the long-term neurological benefits of systemic ASC-CM therapy in the mSOD1G93A mouse model of ALS

    An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-Through-UV Curve Morphology

    Full text link
    We study the IR-through-UV interstellar extinction curves towards 328 Galactic B and late-O stars. We use a new technique which employs stellar atmosphere models in lieu of unreddened "standard" stars. This technique is capable of virtually eliminating spectral mismatch errors in the curves. It also allows a quantitative assessment of the errors and enables a rigorous testing of the significance of relationships between various curve parameters, regardless of whether their uncertainties are correlated. Analysis of the curves gives the following results: (1) In accord with our previous findings, the central position of the 2175 A extinction bump is mildly variable, its width is highly variable, and the two variations are unrelated. (2) Strong correlations are found among some extinction properties within the UV region, and within the IR region. (3) With the exception of a few curves with extreme (i.e., large) values of R(V), the UV and IR portions of Galactic extinction curves are not correlated with each other. (4) The large sightline-to-sightline variation seen in our sample implies that any average Galactic extinction curve will always reflect the biases of its parent sample. (5) The use of an average curve to deredden a spectral energy distribution (SED) will result in significant errors, and a realistic error budget for the dereddened SED must include the observed variance of Galactic curves. While the observed large sightline-to-sightline variations, and the lack of correlation among the various features of the curves, make it difficult to meaningfully characterize average extinction properties, they demonstrate that extinction curves respond sensitively to local conditions. Thus, each curve contains potentially unique information about the grains along its sightline.Comment: To appear in the Astrophysical Journal, Part 1, July 1, 2007. Figures and Tables which will appear only in the electronic version of the Journal can be obtained via anonymous ftp from ftp://ftp.astronomy.villanova.edu . After logging in, change directories to "fitz/FMV_EXTINCTION". A README file describes the various files present in the director

    Mid-infrared Photometric Analysis of Main Belt Asteroids: A Technique for Color-Color Differentiation from Background Astrophysical Sources

    Get PDF
    The Spitzer Space Telescope routinely detects asteroids in astrophysical observations near the ecliptic plane. For the galactic or extragalactic astronomer, these solar system bodies can introduce appreciable uncertainty into the source identification process. We discuss an infrared color discrimination tool that may be used to distinguish between solar system objects and extrasolar sources. We employ four Spitzer Legacy data sets, the First Look Survey-Ecliptic Plane Component (FLS-EPC), SCOSMOS, SWIRE, and GOODS. We use the Standard Thermal Model to derive FLS-EPC main belt asteroid (MBA) diameters of 1-4 km for the numbered asteroids in our sample and note that several of our solar system sources may have fainter absolute magnitude values than previously thought. A number of the MBAs are detected at flux densities as low as a few tens of μJy at 3.6 μm. As the FLS-EPC provides the only 3.6-24.0 μm observations of individual asteroids to date, we are able to use this data set to carry out a detailed study of asteroid color in comparison to astrophysical sources observed by SCOSMOS, SWIRE, and GOODS. Both SCOSMOS and SWIRE have identified a significant number of asteroids in their data, and we investigate the effectiveness of using relative color to distinguish between asteroids and background objects. We find a notable difference in color in the IRAC 3.6-8.0 mm and MIPS 24 μm bands between the majority of MBAs, stars, galaxies, and active galactic nuclei, though this variation is less significant when comparing fluxes in individual bands. We find median colors for the FLS-EPC asteroids to be [F(5.8/3.6), F(8.0/4.5), F(24/8)] = (4.9 ± 1.8, 8.9 ± 7.4, 6.4 ± 2.3). Finally, we consider the utility of this technique for other mid-infrared observations that are sensitive to near-Earth objects, MBAs, and trans-Neptunian objects. We consider the potential of using color to differentiate between solar system and background sources for several space-based observatories, including Warm Spitzer, Herschel, and WISE
    corecore