9,200 research outputs found

    A Spitzer Spectrum of the Exoplanet HD 189733b

    Get PDF
    We report on the measurement of the 7.5-14.7 micron spectrum for the transiting extrasolar giant planet HD 189733b using the Infrared Spectrograph on the Spitzer Space Telescope. Though the observations comprise only 12 hours of telescope time, the continuum is well measured and has a flux ranging from 0.6 mJy to 1.8 mJy over the wavelength range, or 0.49 +/- 0.02% of the flux of the parent star. The variation in the measured fractional flux is very nearly flat over the entire wavelength range and shows no indication of significant absorption by water or methane, in contrast with the predictions of most atmospheric models. Models with strong day/night differences appear to be disfavored by the data, suggesting that heat redistribution to the night side of the planet is highly efficient.Comment: 12 pages, 3 figures, accepted for publication in the Astrophysical Journal Letter

    Enceladus: Cassini observations and implications for the search for life

    Get PDF
    Aims. The recent Cassini discovery of water vapor plumes ejected from the south pole of the Saturnian satellite, Enceladus, presents a unique window of opportunity for the detection of extant life in our solar system. Methods. With its significant geothermal energy source propelling these plumes >80 km from the surface of the moon and the ensuing large temperature gradient with the surrounding environment, it is possible to have the weathering of rocks by liquid water at the rock/liquid interface. For the cases of the putatively detected salt-water oceans beneath the ice crusts of Europa and Callisto, an isolated subsurface ocean without photosynthesis or contact with an oxidizing atmosphere will approach chemical equilibrium and annihilate any ecosystems dependent on redox gradients unless there is a substantial alternative energy source. This thermodynamic tendency imposes severe constraints on any biota that is based on chemical energy. On Enceladus, the weathering of rocks by liquid water and any concomitant radioactive emissions are possible incipient conditions for life. If there is CO, CO2 and NH3 present in the spectra obtained from the plume, then this is possible evidence that amino acids could be formed at the rock/liquid interface of Enceladus. The combination of a hydrological cycle, chemical redox gradient and geochemical cycle give favorable conditions for life. Results. We discuss the search for signatures of these species and organics in the Cassini UVIS spectra of the plume and implications for the possible detection of life

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    The impact of SuperB on flavour physics

    Full text link
    This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed comparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years.Comment: 20 pages, 6 figure

    Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Get PDF
    Abstract Background Voltage-gated Na+ channel β1 (Scn1b) subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In contrast to mammalian β1, however, neither zebrafish subunit produces a complete shift to the fast gating mode and neither subunit produces complete channel inactivation or recovery from inactivation. Conclusion These data add to our understanding of structure-function relationships in Na+ channel β1 subunits and establish zebrafish as an ideal system in which to determine the contribution of scn1ba to electrical excitability in vivo.http://deepblue.lib.umich.edu/bitstream/2027.42/112585/1/12864_2007_Article_939.pd

    Adipose-derived stem cell conditioned medium impacts asymptomatic peripheral neuromuscular denervation in the mutant superoxide dismutase (G93A) transgenic mouse model of amyotrophic lateral sclerosis

    Get PDF
    Background:Amyotrophic lateral sclerosis (ALS) is devastating, leading to paralysis and death. Disease onset begins pre-symptomatically through spinal motor neuron (MN) axon die-back from musculature at ∼47 days of age in the mutant superoxide dismutase 1 (mSOD1G93A) transgenic ALS mouse model. This period may be optimal to assess potential therapies. We previously demonstrated that post-symptomatic adipose-derived stem cell conditioned medium (ASC-CM) treatment is neuroprotective in mSOD1G93A mice. We hypothesized that early disease onset treatment could ameliorate neuromuscular junction (NMJ) disruption. Objective:To determine whether pre-symptom administration of ASC-CM prevents early NMJ disconnection. Methods:We confirmed the NMJ denervation time course in mSOD1G93A mice using co-labeling of neurofilament and post-synaptic acetylcholine receptors (AchR) by α-bungarotoxin. We determined whether ASC-CM ameliorates early NMJ loss in mSOD1G93A mice by systemically administering 200μl ASC-CM or vehicle medium daily from post-natal days 35 to 47 and quantifying intact NMJs through co-labeling of neurofilament and synaptophysin with α-bungarotoxin in gastrocnemius muscle. Results:Intact NMJs were significantly decreased in 47 day old mSOD1G93A mice (p < 0.05), and daily systemic ASC-CM prevented disease-induced NMJ denervation compared to vehicle treated mice (p < 0.05). Conclusions:Our results lay the foundation for testing the long-term neurological benefits of systemic ASC-CM therapy in the mSOD1G93A mouse model of ALS

    Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.

    Get PDF
    There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH
    corecore