8,994 research outputs found
Examining the Robustness of the SWAT Distributed Model Using PSO and GLUE Uncertainty Frameworks
2014 S.C. Water Resources Conference - Informing Strategic Water Planning to Address Natural Resource, Community and Economic Challenge
Does acyclovir help herpes simplex virus cold sores if treatment is delayed?
When herpes simplex virus (HSV) type 1 lesions are in the papule or vesicle stage, there is no benefit to starting oral acyclovir (strength of recommendation [SOR]: C, based on expert opinion). However, topical acyclovir 5% cream applied 5 times a day decreases pain and the duration of hard crust (SOR: B, extrapolated from randomized controlled trials [RCTs]). If started at the onset of symptoms (during the prodrome stage), acyclovir (400 mg 5 times daily for 5 days) decreases pain and healing time to loss of crust and valacyclovir (2 g twice daily for 1 day) reduces the lesion duration and time to healing and may prevent lesion development (SOR: A, based on RCTs)
Further SEASAT SAR coastal ocean wave analysis
Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results
A decreased probability of habitable planet formation around low-mass stars
Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain
the substantial atmospheres and ongoing tectonic activity probably required to
support life. A key element in determining if sufficiently massive "sustainably
habitable" planets can form is the availability of solid planet-forming
material. We use dynamical simulations of terrestrial planet formation from
planetary embryos and simple scaling arguments to explore the implications of
correlations between terrestrial planet mass, disk mass, and the mass of the
parent star. We assume that the protoplanetary disk mass scales with stellar
mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h
< 2, so that disk mass decreases with decreasing stellar mass. We consider
systems without Jovian planets, based on current models and observations for M
stars. We assume the mass of a planet formed in some annulus of a disk with
given parameters is proportional to the disk mass in that annulus, and show
with a suite of simulations of late-stage accretion that the adopted
prescription is surprisingly accurate. Our results suggest that the fraction of
systems with sufficient disk mass to form > 0.3 Earth mass habitable planets
decreases for low-mass stars for every realistic combination of parameters.
This "habitable fraction" is small for stellar masses below a mass in the
interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval
that excludes most M stars. Radial mixing and therefore water delivery are
inefficient in lower-mass disks commonly found around low-mass stars, such that
terrestrial planets in the habitable zones of most low-mass stars are likely to
be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure
Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production
O2 and O3 have been long considered the most robust individual biosignature
gases in a planetary atmosphere, yet multiple mechanisms that may produce them
in the absence of life have been described. However, these abiotic planetary
mechanisms modify the environment in potentially identifiable ways. Here we
briefly discuss two of the most detectable spectral discriminants for abiotic
O2/O3: CO and O4. We produce the first explicit self-consistent simulations of
these spectral discriminants as they may be seen by JWST. If JWST-NIRISS and/or
NIRSpec observe CO (2.35, 4.6 um) in conjunction with CO2 (1.6, 2.0, 4.3 um) in
the transmission spectrum of a terrestrial planet it could indicate robust CO2
photolysis and suggest that a future detection of O2 or O3 might not be
biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 um could be
diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We
find that for these false positive scenarios, CO at 2.35 um, CO2 at 2.0 and 4.3
um, and O4 at 1.27 um are all stronger features in transmission than O2/O3 and
could be detected with SNRs 3 for an Earth-size planet orbiting a
nearby M dwarf star with as few as 10 transits, assuming photon-limited noise.
O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36,
0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 um) by a next generation
direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an
oxygen atmosphere too massive to be biologically produced.Comment: 7 pages, 4 figures, accepted to the Astrophysical Journal Letter
Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds
As photosynthesis on Earth produces the primary signatures of life that can
be detected astronomically at the global scale, a strong focus of the search
for extrasolar life will be photosynthesis, particularly photosynthesis that
has evolved with a different parent star. We take planetary atmospheric
compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets
around observed F2V and K2V stars, modeled M1V and M5V stars, and around the
active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as
well as very low O2 content in case anoxygenic photosynthesis dominates. We
calculate the incident spectral photon flux densities at the surface of the
planet and under water. We identify bands of available photosynthetically
relevant radiation and find that photosynthetic pigments on planets around F2V
stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in
the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and
1.8-2.5 microns. In addition, we calculate wavelength restrictions for
underwater organisms and depths of water at which they would be protected from
UV flares in the early life of M stars. We estimate the potential productivity
for both surface and underwater photosynthesis, for both oxygenic and
anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer
wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March
200
Study of damage control systems for space station
Damage control systems for detecting and locating overboard and onboard leak and damage modes on space station
Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes
This is the final version of the article. Available from the publisher via the DOI in this record.Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell.This work was supported by the Portuguese Foundation for Science
and Technology and FEDER/COMPETE (SFRH/BD/73532/2010 to
S.C. Guimaraes) and CRUP/Treaty of Windsor (ACÇÕES INTEGRAD
AS 2009, B-33/09 to G. Steinberg and M. Schuster). G. Steinberg
acknowledges support from the Biotechnology and Biological Sciences
Research Counc
Next generation communications satellites: multiple access and network studies
Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed
- …