8,091 research outputs found

    Deployment mechanisms on Pioneer Venus probes

    Get PDF
    Deployment mechanisms were developed to position scientific instruments during probe descent into the Venus atmosphere. Each mechanism includes a provision for pyrotechnic release of the enclosure door, negator springs for positive deployment torque, and an active damper using a shunted dc motor. The deployment time requirement is under 2 seconds, and the deployment shock must be less than 100 g's. The mechanism is completely dry lubricated and constructed mainly of titanium for high strength and high temperature stability. The mechanism was qualified for descent decelerations up to 565 g's and for instrument alignment up to 940 F. The mechanism requirements, the hardware design details, the analytical simulations, and the qualification testing are described

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Get PDF
    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements

    The nuclear spectrum of the radio galaxy NGC 5128 (Centaurus A)

    Full text link
    We present near-infrared spectra of the nuclear disk in the nearby radio galaxy NGC 5128 (Centaurus A). On the basis of the observed strengths of the [S III] 0.9532um and [Fe II] 1.2567um lines, we classify NGC 5128 as a LINER. Modeling of the strengths of these and additional lines suggests that the nuclear region is powered by shocks rather than photoionization.Comment: 12 pages including 2 figures, accepted by ApJ Letter

    Attacking Group Protocols by Refuting Incorrect Inductive Conjectures

    Get PDF
    Automated tools for finding attacks on flawed security protocols often fail to deal adequately with group protocols. This is because the abstractions made to improve performance on fixed 2 or 3 party protocols either preclude the modelling of group protocols all together, or permit modelling only in a fixed scenario, which can prevent attacks from being discovered. This paper describes Coral, a tool for finding counterexamples to incorrect inductive conjectures, which we have used to model protocols for both group key agreement and group key management, without any restrictions on the scenario. We will show how we used Coral to discover 6 previously unknown attacks on 3 group protocols

    Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements

    Get PDF
    An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures

    Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    Full text link
    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 AU from the sun and covering the wavelength range 0.3 to 2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.Comment: Accepted for publication in PAS

    Debugging of Web Applications with Web-TLR

    Full text link
    Web-TLR is a Web verification engine that is based on the well-established Rewriting Logic--Maude/LTLR tandem for Web system specification and model-checking. In Web-TLR, Web applications are expressed as rewrite theories that can be formally verified by using the Maude built-in LTLR model-checker. Whenever a property is refuted, a counterexample trace is delivered that reveals an undesired, erroneous navigation sequence. Unfortunately, the analysis (or even the simple inspection) of such counterexamples may be unfeasible because of the size and complexity of the traces under examination. In this paper, we endow Web-TLR with a new Web debugging facility that supports the efficient manipulation of counterexample traces. This facility is based on a backward trace-slicing technique for rewriting logic theories that allows the pieces of information that we are interested to be traced back through inverse rewrite sequences. The slicing process drastically simplifies the computation trace by dropping useless data that do not influence the final result. By using this facility, the Web engineer can focus on the relevant fragments of the failing application, which greatly reduces the manual debugging effort and also decreases the number of iterative verifications.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    Get PDF
    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
    corecore