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Abstract. Automated tools for finding attacks on flawed security pro-
tocols often struggle to deal with protocols for group key agreement.
Systems designed for fixed 2 or 3 party protocols may not be able to
model a group protocol, or its intended security properties. Frequently,
such tools require an abstraction to a group of fixed size to be made
before the automated analysis takes place. This can prejudice chances of
finding attacks on the protocol. In this paper, we describe Coral, our
system for finding security protocol attacks by refuting incorrect induc-
tive conjectures. We have used Coral to model a group key protocol in a
general way. By posing inductive conjectures about the trace of messages
exchanged, we can investigate novel properties of the protocol, such as
tolerance to disruption, and whether it results in agreement on a single
key. This has allowed us to find three distinct novel attacks on groups of
size two and three.

1 Introduction

The aim of cryptographic security protocols is to prescribe a way in which users
can communicate securely over an insecure network. A protocol describes an
exchange of messages in which the principals involved establish shared secrets,
in order perhaps to communicate privately or to protect themselves from imper-
sonators. These protocols are designed to be secure even in the presence of an
active attacker, who may intercept or delay messages and send faked messages
in order to gain access to secrets. Unsurprisingly, given this hostile operating
environment, they have proved very hard to get right. What’s more, protocol
flaws are often quite subtle. New attacks are often found on protocols many years
after they were first proposed.

In the last five years or so, there has been an explosion of interest in the idea
of applying formal methods to the analysis of these protocols. Researchers have
used techniques from model checking, term rewriting, theorem proving and logic
programming amongst others, [19, 20, 27]. However, very few of these are able
to analyse protocols for group key agreement, where an unbounded number of
parties may be involved in a single round, [21, 27]. Significant attacks on such
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protocols have appeared in the literature, but these have been discovered by
hand, [28]. A problem for many automated approaches is that they can only
attack concrete models of protocols, and so require the size of the group to be
chosen in advance. This can prejudice the chances of discovering an attack. In
this paper, we model such a protocol in a general way, without predetermining
group size. The protocol in question is the Asokan–Ginzboorg protocol for key
establishment in an ad-hoc Bluetooth network, [2]. Our formalism is a first-order
version of the inductive model proposed by Paulson, [27]. The use of a first-order
model allows us to search for counterexamples using automatic methods, which
is not supported in Paulson’s approach. We show how our counterexample finder
for inductive conjectures, Coral, has been used to automatically discover three
new attacks on the protocol. One requires the group to be of size two, and the
other two require a group of size three or more. Coral refutes incorrect inductive
conjectures using the ‘proof by consistency’ technique. Proof by consistency was
originally developed as a method for automating inductive proofs in first-order
logic, but has the property of being refutation complete, i.e. it is able to refute
in finite time conjectures which are inconsistent with the set of hypotheses.
Recently, Comon and Nieuwenhuis have drawn together and extended previous
research to show how it may be more generally applied, [12]. Coral is the first
full implementation of this technique, built on the theorem prover Spass, [37].

In the rest of the paper, we first briefly review previous work in security pro-
tocol analysis, refutation of incorrect conjectures and proof by consistency (§2).
This explains the motivation for our development of Coral. The Coral system
is described in §3, and Coral’s protocol model in §4. We give a description of
the Asokan–Ginzboorg protocol in §5. In §6, we explain how we modelled the
Asokan–Ginzboorg protocol for a group of unbounded size. Then we show how
we used Coral to discover three attacks on the protocol in §7. At the end of
§7, we propose a new improved version of the protocol. In §8, we compare our
results using Coral to other research on protocol analysis, paying particular
attention to work on group protocol analysis. We suggest further work in §9,
and summarise and conclude in §10.

2 Background

Security protocols were first proposed by Needham and Schroeder, [25]. The au-
thors predicted that their protocols may be ‘prone to extremely subtle errors
that are unlikely to be detected in normal operation’. They turned out to be
correct. Several attacks, i.e. sequences of messages leading to a breach in se-
curity, were found in subsequent years. Since then more protocols have been
proposed, many of which also turned out to be flawed. In the last five years
or so, the interest in the problem from formal methods researchers has greatly
increased. The problem of deciding whether a protocol is secure or not is in gen-
eral undecidable, [14], due to the unbounded number of agents and parallel runs
of the protocol that must be considered, and the unbounded number of terms
an intruder can generate. However, good results in terms of new attacks and
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security guarantees have been achieved by a variety of methods, e.g. [19, 20, 27,
11]. Techniques based on model checking, term rewriting, theorem proving and
logic programming each have their advantages and their advocates. For example,
model checking approaches can find flaws very quickly, but can only be applied
to finite (and typically very small) instances of the protocol, [19]. This means
that if no attack is found, there may still be an attack upon a larger instance.
Other methods can find guarantees of security quickly, but provide no help in
finding attacks on flawed protocols, [11], or require the user to find and prove
lemmas in order to reduce the problem to a tractable finite search space, [20].
Recently, dedicated tools for protocol analysis such as Athena have been built,
combining techniques from model checking and theorem proving with a special
purpose calculus and representation, [31]. Though user interaction is sometimes
required to ensure termination, in general Athena’s results are impressive. In
terms of analysing the standard corpus of two and three party protocols given
in [10], the field can now be said to be saturated. Most research attention has
now turned to trying to widen the scope of the techniques, e.g. to more precise
models of encryption, [23], ‘second-level’ protocols, [7], and group protocols, [21].

One method for protocol analysis that has proved very flexible is Paulson’s
inductive method, [27]. Protocols are formalised in typed higher-order logic as
the set of all possible traces. Security properties can be proved by induction on
traces, using the mechanized theorem prover Isabelle/HOL, [26]. The inductive
method deals directly with the infinite state model, and assumes an arbitrary
number of protocol participants, allowing properties of group protocols to be
proved. However, proofs are tricky and require days or weeks of expert effort.
Proof attempts may break down, and as Paulson notes, this can be hard to inter-
pret. Perhaps further lemmas may need to be proved, or a generalisation made,
or the conjecture may in fact be incorrect, indicating a flaw in the protocol.
Coral was designed to automate the task of refuting incorrect inductive con-
jectures in such a scenario. Additionally, if a refutation is found, Coral provides
a counterexample, giving the user the trace required to exploit the protocol flaw.

The refutation of incorrect inductive conjectures is a problem of general in-
terest in the automated theorem proving community. Tools have been proposed
by Protzen, [29], Reif, [30], and Ahrendt, [1]. Ahrendt’s method works by con-
structing a set of clauses to send to a model generation prover, and is restricted
to free datatypes. Protzen’s technique progressively instantiates terms in the
formula to be checked using the recursive definitions of the function symbols
involved. Rief’s method instantiates the formula with constructor terms, and
uses simplifier rules in the theorem prover KIV to evaluate truth or falsehood.
These techniques have found many small counterexamples, but are too näıve
for a situation like protocol checking. They are designed for datatypes that can
be easily enumerated, e.g. types in which any combination of constructors is a
valid member of the type. In a protocol analysis scenario, this would tend to
generate many non-valid traces, for example, traces in which an honest agent
sends message 3 in a protocol without having received message 2. This could be
accounted for in the specification by using a predicate to specify valid traces,
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but given the complexity of the protocol analysis problem, it would seem too
inefficient to keep generating invalid traces only to later reject them. A method
more suited to inductive datatypes is required.

Proof by consistency was originally conceived by Musser, [24], as a method for
proving inductive theorems by using a modified Knuth-Bendix completion pro-
cedure. The idea is to show that a conjecture is a theorem by proving consistency
with the axioms in the intended semantics. It was developed by Bachmair, [4],
Ganzinger and Stuber, [17], and Bouhoula and Rusinowitch, [9], amongst others.
Interest waned as it seemed too hard to scale the technique up to proving larger
conjectures. However, later versions of the technique did have the property of
being refutation complete, that is able to detect false conjectures in finite time.
Comon and Nieuwenhuis, [12], have shown that the previous techniques for proof
by consistency can be generalised to the production of a first-order axiomatisa-
tion A of the minimal Herbrand model such that A∪E ∪C is consistent if and
only if conjecture C is an inductive consequence of axioms E. With A satisfy-
ing the properties they define as a Normal I-Axiomatisation, inductive proofs
can be reduced to first-order consistency problems and so can be solved by any
saturation based theorem prover. This allows all the techniques developed for
improving the performance of automatic first-order provers, such as reduction
rules, redundancy detection, and efficient memory management techniques, to
be used to aid the search for a proof or refutation. We describe the method in
the next section.

3 The Coral System

Coral is an implementation of the Comon-Nieuwenhuis method for proof by
consistency, [12], in the theorem prover Spass, [37]. There is only room for a
summary of the technique and how it is implemented here. More details are
available in [32].

The Comon–Nieuwenhuis method relies on a number of theoretical results,
but informally, a proof attempt involves two parts. In the first part, we pursue
a fair induction derivation. This is a restricted kind of saturation, [5], where we
need only consider overlaps between axioms and conjectures, and produce infer-
ences from an adapted superposition rule. In the second part, every clause in the
induction derivation is checked for consistency against an I-Axiomatisation. This
is typically a set of clauses sufficient for deciding inequality of ground terms. If
all the consistency checks succeed, and the induction derivation procedure termi-
nates, the theorem is proved. If any consistency check fails, then the conjecture
is incorrect. Comon and Nieuwenhuis have shown refutation completeness for
this system, i.e. any incorrect conjecture will be refuted in finite time, [12]. Since
the induction derivation procedure may not terminate, we must carry out the
consistency checks in parallel to retain refutation completeness. Coral uses
a parallel architecture to achieve this, using a socket interface to send clauses
for I-Axiomatisation checking to a parallel prover. For problems specified by a
reductive definition, [12, p. 19], which includes most natural specifications of in-
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ductive datatypes, this strategy offers marked performance improvements over
a standard superposition strategy without losing refutation completeness. More
details in [32].

In the case where a refutation is found, we are able to extract a counterex-
ample by means of a well-known method first proposed by Green, [18]. When
Coral refutes a security conjecture of the form ∀trace.P (trace), it has proved
in its superposition calculus that ∃trace.¬P (trace). We track the instantiations
made to the trace variable using an answer literal, following Green’s method.
Green has shown that this will always yield a correct constructive answer for
these types of proofs. We show how new attacks are discovered as counterexam-
ples in §7.

4 Coral’s Protocol Model

The aim of Coral’s model was a first-order version of Paulson’s inductive model
for protocol analysis. Though Paulson’s formalism is encoded in higher-order
logic, no fundamentally higher-order concepts are used – in particular there is no
unification of functional objects. Objects have types, and sets and lists are used.
All this we model in first-order logic. Our formalism is typed, though it is also
possible to relax the types and search for type attacks. Like Paulson’s, our model
allows an indeterminate and unbounded number of agents to participate, playing
any role, and using an arbitrary number of fresh nonces and keys. Freshness is
modelled by the parts operator: a nonce N is fresh with respect to a trace trace
if in(N, parts(trace)) = false. This follows Paulson’s model, [27, p. 12].

A protocol is modelled as the set of all possible traces, i.e. all possible se-
quences of messages sent by any number of honest users under the specification
of the protocol and, additionally, faked messages sent by the intruder. A trace
of messages is modelled as a list. A distinct feature of our formalism is that the
entire state of the system is encoded in the trace. Other models with similar
semantics often encode information about the knowledge of principals and the
intruder in separate predicates. The latter approach has advantages in terms
of the time required to find attacks on standard 2 or 3 party protocols, but
our approach allows us to add unbounded numbers of messages to the trace
under a single first-order rule, which is the key feature required to model the
Asokan–Ginzboorg protocol without predetermining group size.

The intruder has the usual capabilities specified by the Dolev-Yao model,
[13], i.e. the ability to intercept all messages in the trace, and to break down
and reassemble the messages he has seen. He can only open encrypted packets
if he has the correct key, and is assumed to be accepted as an honest player by
the other agents. We specify intruder knowledge in terms of sets. Given a trace
of messages exchanged, xt , we define analz (xt) to be the least set including xt
closed under projection and decryption by known keys. This is accomplished by
using exactly the same rules as the Paulson model, [27, p. 12]. Then we can
define the terms the intruder may build, given a trace xt , as being members of
the set synth(analz (xt)), where synth(x) is the least set containing x, including



6

agent names and closed under pairing and encryption by known keys. The in-
truder may send anything in synth(analz (xt)) provided it matches the template
of one of the messages in the protocol. This last feature is an optimisation to
make searching for attacks more efficient, since the spy gains nothing from send-
ing a message that no honest agent will respond to, [33]. We use this feature
to define a domain specific redundancy rule for clauses: a clause is considered
redundant if it specifies that the intruder must use a subterm which does not
occur in any protocol message. By using the term indexing built into Spass we
can make this check extremely efficiently, resulting in a marked performance im-
provement. Coral has a further redundancy rule which eliminates clauses with
an unsatisfiable parts constraint, i.e. a parts literal where the variable that is
supposed to represent a fresh nonce appears in the trace referred to by the parts
operator. These clauses would of course be eliminated eventually by the axioms
defining parts, but by eagerly pruning them, we save time.

For a specific protocol, we generally require one axiom per protocol mes-
sage, each one having the interpretation, ‘if xt is a trace containing message n
addressed to agent xa, then xt may be extended by xa responding with mes-
sage n + 1’. The tests that a suitable message n has been sent are known as
control conditions. After the axioms specifying the protocol have been written
down, a script automatically produces the clauses needed to model the intruder
sending and receiving these protocol messages. These two sets of rules can be
added to a standard set of axioms describing types, the member function, and
the intruder to complete the protocol specification. It should be possibly to au-
tomatically generate the message axioms from a protocol specification language
such as HLSPL, [6].

Using this model, Coral has rediscovered several known attacks on two and
three party security protocols including Needham-Schroeder, Neuman-Stubblebine
and BAN Otway-Rees. This latter is significant since it requires an honest agent
to generate two fresh nonces and to play the role of both the initiator and the
responder, things which previous first-order models have not allowed, [36]. Run
times on a Pentium IV Linux box vary from 17 seconds for Needham-Schroeder
public key to 15 minutes for Otway-Rees. This is significantly slower than our
competitors, e.g. [6, 31]. However, there are two rather more positive aspects
to Coral’s performance. The first is that Coral searches for a counterexam-
ple in the general model of a protocol, not just in a model involving particular
principals being involved in particular sessions as specified by the user, as for
example in [6]. The second is that although Coral’s backwards search proceeds
quite slowly, primarily because of time spent doing subsumption checking for
each new clause, this checking together with the domain-specific redundancy
rules described above means that many states are eliminated as being redun-
dant with respect to the states we have already explored. This leads to quite
an efficient search, for example for the Needham-Schroeder public key protocol,
Coral generates 1452 clauses, keeps 610 after redundancy checking, and dis-
covers the attack at the 411th clause it considers. This gave us the confidence
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that Coral would scale up to a group protocol whose model has a much larger
branching rate, like the group protocol considered in this paper.

5 The Asokan–Ginzboorg Protocol

Asokan and Ginzboorg of the Nokia Research Centre have proposed an appli-
cation level protocol for use with Bluetooth devices, [2]. The scenario under
consideration is this: a group of people are in a meeting room and want to set
up a secure session amongst their Bluetooth-enabled laptops. However, their
computers have no shared prior knowledge and there is no trusted third party or
public key infrastructure available. The protocol proceeds by assuming a short
group password is chosen and displayed, e.g. on a whiteboard. The password
is assumed to be susceptible to a dictionary attack, but the participants in the
meeting then use the password to establish a secure secret key.

Asokan and Ginzboorg describe two protocols for establishing such a key in
their paper, [2]. We have analysed the first of these. Completing analysis of the
second protocol using Coral would require some further work (see §9). Here
is a description of the first Asokan–Ginzboorg protocol (which we will hereafter
refer to as simply ‘the Asokan–Ginzboorg protocol’). Let the group be of size
n for some arbitrary n ∈ N, n ≥ 2. We write the members of the group as Mi,
1 ≤ i ≤ n, with Mn acting as group leader.

1. Mn → ALL : Mn, {| E }|P
2. Mi → Mn : Mi, {| Ri, Si }|E i = 1, . . . , n− 1
3. Mn → Mi : {| {Sj, j = 1, . . . , n} }|Ri

i = 1, . . . , n− 1
4. Mi → Mn : Mi, {| Si, h(S1, . . . , Sn) }|K some i, K = f(S1, . . . , Sn)

What is happening here is:

1. Mn broadcasts a message containing a fresh public key, E, encrypted under
the password, P , which she has written on the whiteboard.

2. Every other participant Mi, for i = 1, . . . , n− 1, sends Mn a contribution to
the final key, Si, and a fresh symmetric key, Ri, encrypted under public key
E.

3. Once Mn has a response from everyone in the room, she collects together the
Si in a package along with a contribution of her own (Sn) and sends out one
message to each participant, containing this package S1, . . . , Sn encrypted
under the respective symmetric key Ri.

4. One participant Mi responds to Mn with the package he just received passed
through a one way hash function h() and encrypted under the new group
key K = f(S1, . . . , Sn), with f a commonly known function.

Asokan and Ginzboorg argue that it is sufficient for each group member to receive
confirmation that one other member knows the key: everyone except Mn receives
this confirmation in step 3. Mn gets confirmation from some member of the
group in step 4. Once this final message is received, the protocol designers argue,
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agents M1, . . . ,Mn must all have the new key K = f(S1, . . . , Sn). The protocol
has three goals: the first is to ensure that a spy eavesdropping on Bluetooth
communications from outside the room cannot obtain the key. Secondly, it aims
to be secure against disruption attacks – attacks whereby a spy prevents the
honest agents from completing a successful run of the protocol – by an attacker
who can add fake messages, but not block or delay messages. Thirdly, it aims by
means of contributory key establishment to prevent a group of dishonest players
from restricting the key to a certain range. We used these goals as the basis of
our investigation described in §7.

6 Modelling the Asokan–Ginzboorg Protocol

In Coral’s model we reason about traces as variables, which may later be
instantiated to any number of messages. This allows us to model the protocol
generally with respect to the size of the group. The use of a general model means
that we do not have to guess how many players are needed to achieve an attack –
Coral will search for attacks involving any number of participants. Of course,
Coral is more likely to find attacks with small number of participants first,
since this will involve reasoning with smaller clauses.

Our methodology for modelling the Asokan–Ginzboorg protocol was the same
as for fixed 2 or 3 principal protocols, i.e. to produce one rule for each protocol
message describing how a trace may be extended by that message, taking into
account the control conditions. So for message 2, our rule express the fact that
an agent can send a message 2 if he has seen a message 1 in the trace, and
will only use fresh numbers Si and Ri in his message. However, for the Asokan–
Ginzboorg protocol, message 3 posed a problem. For a group of n participants,
n−1 different message 3s will be sent out at once. Moreover, the group leader for
the run must check the control condition that she has received n−1 message 2s.
This could not be modelled by a single first-order clause without predetermining
the size of the group. This problem was solved by adding two more clauses to
the model. We recursively define a new function which checks a trace to see
if all message 2s have been sent for a particular group leader and number of
participants. It returns a new trace containing the response prescribed by the
protocol1. It works in all modes of instantiation, allowing us to use it to construct
protocol runs for various sized groups while the refutation search is going on.
This shows an advantage of a theorem-prover based formalism – we have access
to full first-order inference for control conditions like these in our protocol model.
A full description of this function is available via http://homepages.inf.ed.
ac.uk/s9808756/asokan-ginzboorg-model/.

1 Note that this was only required for modelling honest agents sending message 3s,
since they have to conform to the protocol. The intruder can send any combination
of message 3s, no matter what message 2s have appeared in the trace. He is only
constrained by what knowledge he can extract from previous messages in the trace,
by the same rules as for regular protocols.
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7 Attacking the Asokan–Ginzboorg Protocol

We decided to test the protocol against two attackers: one inside the room,
and one outside. The spy outside tries to affect disruption attacks, and the spy
inside tries to gain control of communication in the room, e.g. by making all
participants agree on different keys that only he knows. As we are in a wireless
scenario, both spies capabilities differ from the normal Dolev-Yao model in that
they cannot prevent particular messages from being received, they can only insert
additional fake messages of their own.

Finding attacks in Coral results from finding counterexamples to security
properties. These are formulated in a similar way to Paulson’s method. We
must formulate the required properties in terms of the set of possible traces of
messages. The following conjecture was used to check for disruption attacks:

%% some honest xi has sent message 4, so has key f(Package):
eqagent(XI,spy)=false ∧
member(sent(XI,XK,pair(principal(XI),

encr(pair(nonce(SI ), h(Package)), f (Package)))),Trace) = true∧

%% genuine messages 3 and 1 are in the trace to some agent XJ :
member(sent(MN,XJ,encr(Package,nonce(RJ))),Trace)=true ∧
member(sent(MN,all,pair(principal(MN),encr(key(E),key(P)))) ∧

,Trace)=true

%% but XJ never sent a message 2 under public key E with nonces SJ
%% (which is in Package) and RJ (which the message 3 meant for
%% him was sent under). That means he doesn’t have RJ, and so can’t
%% get the key from his message 3.
member(nonce(SJ),Package)=true ∧
member(sent(XJ,MN,pair(principal(XJ),encr(pair(nonce(RJ),nonce(SJ)),

key(E)))),Trace)=false
→

This conjecture expresses that a run has been finished (i.e. a message 4 has
been sent) and that there is some agent who does not now have the key (i.e.
he cannot read his message 3). Note that conjecture is negative, i.e. it says that
for all possible traces, no trace can have the combination of genuine messages
4,3 and 1 without a corresponding message 2. Note also that the conjecture is
completely general is terms of the size of the group. When first run with this
conjecture, Coral produces the following counterexample for a group of size 2:

1. M2 → ALL : M2, {| E }|P
1′. spyM1 → ALL : M1, {| E }|P
2′. M2 → M1 : M2, {| R2, S2 }|E
2. spyM1 → M2 : M1, {| R2, S2 }|E
3. M2 → M1 : {| S′

2, S2 }|R2

3′. spyM1 → M2 : {| S′
2, S2 }|R2

4.′ M2 → M1 : M2, {| S2, h(S′
2, S2) }| f(S′

2,S2)
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At the end of the run, M2 now accepts the key f(S′
2, S2) as a valid group key,

but it contains numbers known only to M2, and not to M1. Encrypting the
agent identifier in message 1 stops the spy from sending the fake message 1’,
preventing the attack. However, when we made this correction to the protocol,
and ran Coral again with the same conjecture, Coral found the following
counterexample for a group of size 3:

1. M1 → ALL : {| M1, E }|P
2. M2 → M1 : M2, {| R2, S2 }|E
2. spyM3 → M1 : M3, {| R2, S2 }|E
3. M1 → M2 : {| S2, S2, S1 }|R2

3. M1 → M3 : {| S2, S2, S1 }|R2

4. M2 → M1 : M2, {| S2, h(S2, S2, S1) }| f(S2,S2,S1)

This is another disruption attack, where the spy eavesdrops on the first message 2
sent, and then fakes a message 2 from another member of the group. This results
in the protocol run ending with only two of the three person group sharing the
key. This attack can also be prevented by a small change to the protocol, this
time by encrypting the agent identifier in message 2 (see §7.1 below). Coral
took about 2.5 hours to find the first attack, and about 3 hours to find the
second. With these two attacks prevented, Coral finds no further disruption
attacks after three days run-time.

When considering a scenario where one of the agents inside the room is a spy,
we decided to consider what might be possible when all the players in the room
think they have agreed on a key, but have in fact agreed on different keys. If the
spy knows all these keys, he could filter all the information exchanged, perhaps
making changes to documents, such that the other agents in the room are none
the wiser. The only change to Coral’s model for this scenario is to allow the
spy to read the password on the whiteboard. We then checked for non-matching
key attacks by giving Coral the following conjecture:

% we have distinct honest agents XI and XJ
eqagent(XI,spy)=false ∧
eqagent(XJ,spy)=false ∧
eqagent(XJ,XI)=false ∧

% they both sent message 2s in response to the same message 1
member(sent(XI,MN,pair(principal(XI),
encr(pair(nonce(RI ),nonce(SI )), key(E )))),Trace) = true∧
member(sent(XJ,MN,pair(principal(XJ),
encr(pair(nonce(RJ ),nonce(SJ )), key(E )))),Trace) = true∧

% and received message 3s under the correct keys, RI and RJ
member(sent(MN,XI,encr(Package1,nonce(RI))),Trace)=true∧
member(sent(MN,XJ,encr(Package2,nonce(RJ))),Trace)=true∧

% but the packages they received were different
eq(Package1,Package2)=false →



11

Note again that the conjecture is negative, i.e. it states that there is no trace for
which this combination of conditions can hold. Coral refuted this property in
about 3 hours, producing the counterexample trace:

1. spy → ALL : spy, {| E }|P
2. M1 → spy : M1, {| R1, S1 }|E
2. M2 → spy : M2, {| R2, S2 }|E
3. spy → M1 : {| S1, S2, Sspy }|R1

3. spy → M2 : {| S1, S2, S
′
spy }|R2

4. M1 → spy : M1, {| S1, h(S1, S2, Sspy) }| f(S1,S2,Sspy)

This attack is just a standard protocol run for three participants, except that in
the first message 3, the spy switches in a number of his own (S′

spy in the place
of S2). This means that M1 accepts the key as f(Sspy, S1, S

′
spy), whereas M2

accepts f(Sspy, S1, S2), and both of these keys are known to the spy.

7.1 An Improved Version of the Protocol

As mentioned above, we can prevent the disruption attacks by encrypting the
agent identifiers in messages 1 and 2. To prevent the attack by the spy inside
the room, we can require message 4 to be broadcast to all participants, so that
everyone can check they have agreed on the same key. Here is the revised Asokan–
Ginzboorg protocol, with boxes highlighting the changes:

1. Mn → ALL : {| Mn , E }|P
2. Mi → Mn : {| Mi , Ri, Si }|E , i = 1, . . . , n− 1
3. Mn → Mi : {| {Sj, j = 1, . . . , n} }|Ri , i = 1, . . . , n− 1
4. Mi → ALL : Mi, {| Si, h(S1, . . . , Sn) }|K , some i.

8 Related Work

A protocol for group key management has also been modelled by Taghdiri and
Jackson, [34]. In this case the protocol under consideration was the Pull-Based
Asynchronous Rekeying Framework, [35]. The Taghdiri-Jackson model is gen-
eral in terms of the number of members of the group, but does not model a
malicious intruder trying to break the protocol. Instead, they just investigate
correctness properties of the protocol. One correctness property is found not to
hold, revealing a flaw whereby a member of the group may accept a message
from an ex-member of the group as being current. However, though potentially
serious, this flaw is somewhat trivial to spot, and is evident from a description
of the rather weak protocol. Taghdiri and Jackson propose a fix for the protocol.
However, without the modelling of a wilfully malicious member, who can eaves-
drop on protocol traffic and construct fake messages, they failed to produce a
secure protocol. We have recently modelled the improved protocol in Coral and
discovered attacks which are just as serious as the two they discovered. Details
will appear in a future publication.
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The most successful attempt at group protocol analysis in terms of finding
new attacks was [28], where the case study was the CLIQUES protocol suite,
[3]. Pereira and Quisquater discovered a number of new attacks, using a pen-
and-paper approach and borrowing some ideas from the strand space model,
[15]. Their attacks were quite subtle, involving properties of the Diffie-Hellman
exponentiation operation widely used in the CLIQUES suite. They also involved
the spy doing some quite imaginative things, like joining the group, leaving, and
then forcing the remaining members to accept a compromised key. Interestingly,
some of their attacks required the group to be of size four or more, backing
up the case for taking a general approach in terms of group size. Pereira and
Quisquater showed the value of by-hand analysis taking algebraic properties of
cryptographic functions into account, but only when undertaken by experts.

Meadows made an attempt to extend the NRL protocol analysis tool to make
it suitable for analysing group protocols, [21]. Again the CLIQUES protocols
were used as an example. However, the NRL tool was not able to rediscover the
attacks Pereira and Quisquater had discovered, because of the intricate series of
actions the spy has to perform to effect the attack. The NRL tool is tied to quite
constrained notions of secrecy and authenticity, which may be where the problem
lay. It would be interesting to see whether these kinds of attacks could be found
automatically by Coral. We hope that the very flexible inductive model used
might mean that these attacks are within Coral’s scope. However, some work
would be required to model the associative and commutative properties of the
exponentiation operation used. Modelling these properties is a topic which has
recently started to attract more research interest [23]

Tools like Athena, [31], and the On-The-Fly Model Checker (OFMC), [6], can
discover attacks on standard 2 and 3 party protocols much faster than Coral,
thanks to their special purpose representations and inference algorithms. How-
ever, both would have trouble modelling the Asokan–Ginzboorg protocol and
similar group protocols in a general way, without setting the group size. Athena
uses an extension of the strand space model, [15]. One of Athena’s requirements
is that a so-called semi-bundle should be finite. However, this would be impos-
sible for semi-bundles in an Asokan–Ginzboorg protocol strand space, since a
strand may contain an unbounded number of message 3s. The OFMC is con-
strained to a one to one relationship between transitions and messages sent. This
would seem to make it impossible to model an arbitrary number of message 3s
being added to the trace without some adaptation of the tool.

9 Further Work

Our work with Coral is ongoing. We do not intend to compete for speed of
attack finding on a large corpus of standard protocols, since other approaches are
better suited to this. Instead we intend to focusing on the kind of flexible or group
protocols that are not easy to attack using a model checking approach. One goal
is to develop a corpus of group protocols and attacks like the Clark-Jacob corpus
for standard protocols, [10]. We also intend to write a converter to allow protocols
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to be given to Coral in an existing protocol specification language like HLSPL,
[6], or MuCAPSL, [22]. This would ease further comparison between Coral and
other tools. It would be very interesting to see if the Asokan–Ginzboorg protocol
analysed here could be specified in such a language without choosing a group
size, and if not, what features we should have to add to these languages.

As Coral is built on Spass, a theorem prover capable of equational rea-
soning, we should be able to reason about some simple algebraic properties of
the cryptosystems underlying protocols, such as Diffie-Hellman type operations.
This would allow us to analyse the second Asokan–Ginzboorg protocol, which is
quite different to the first and seems not to be susceptible to the same attacks,
and also the CLIQUES protocols mentioned above. The main task here would
be to devise a way of modelling the low-level cryptographic operations in such a
way that the essential properties are captured, but without going into too fine
a degree of detail which would make automated analysis infeasible.

Apart from the small number of domain specific redundancy rules described
in §4, Coral is a general counterexample finding tool for inductive theories. We
would like to explore other situations where such a tool may be of use, such as
the detection of false lemmas and generalisations in an inductive theorem prover.

A longer term aim is to adapt Coral to be able to analyse security APIs
of cryptographic hardware modules, such as are used for electronic point-of-sale
devices and automated teller machines. Serious flaws have been found in these
in recent years, [8]. Some of these attacks involve reducing the complexity of
guessing a secret value by brute force search using some information leaked by
the API as the result of some unexpected sequence of commands. These kinds of
attacks are beyond the scope of current protocol analysis tools, and would require
measures of guess complexity to be considered along with the usual protocol
traces. We could perhaps accomplish this in Coral by attaching complexity
literals to each clause in the same way that we currently attach answer literals.

10 Conclusions

We have presented Coral, our system for refuting incorrect inductive conjec-
tures, and shown three new attacks on the Asokan–Ginzboorg protocol that it
found. An advantage of looking for attacks on group protocols with Coral is
that we can model the protocol generally and so look for attacks on any size of
group. The distinct attacks discovered on groups of size two and three demon-
strate the efficacy of this approach. A model checking type approach would
have required us to fix the size of the group in advance. Additionally, refuting
conjectures about traces in an inductive formalism allows us to look for uncon-
ventional attacks, e.g. where two members of the group share different keys with
the intruder which they both believe to be the group key.

In future we intend to attack more group protocols, particularly wireless
group protocols. We aim eventually to be able to find attacks on security APIs
that require brute force guess complexity considerations to be taken into account.
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