13 research outputs found

    Influence of Organic Amendments on Soil Carbon Sequestration Potential of Paddy Soils under Two Irrigation Regimes

    No full text
    Soil organic carbon (OC) is one of the most important soil components regulating soil quality, fertility and agronomic productivity as well as the global carbon (C) cycle. Soil acts as a sink for global C, which can be influenced by the water regime and organic matter (OM) management in field. The aim of this study is to evaluate the effect of the application of different organic amendments on C sequestration in paddy soils under contrasting irrigation regimes. A 4-month pot experiment was conducted under net house conditions and the treatments were composed of two organic amendments: rice straw (RS) and poultry manure (PM); four application rates of amendment: 0 g (control), 2.5 g, 5.0 g and 15.0 g kg−1 soil; and two irrigation regimes: (i) continuous waterlogging condition (CWL) and (ii) alternate wetting and drying (AWD). After the incubation period, soil samples were collected from the pot and isolated into labile (>53 µm) and mineral-associated ( AWD: 35%). This was explained by the induced aerobic condition in between the anerobic condition in AWD and the continuous anaerobic condition in CWL which resulted in a difference in OM decomposition. The mineral-associated OM fraction (−1 soil application under CWL-irrigated paddy soil. The findings indicated the need to pay more attention to the selection of the proper type and rate of organic amendments for higher C sequestration in soil under a specific irrigation system for sustainable agriculture

    MATLAB-based vibration signal processing for fault diagnosis

    No full text
    Traditionally, vibration signal processing has been performed using analog and digital signal analyzers or writing code in intermediate and high-level computer languages. However, the advent of higher-level interpretive-based signal processing software products such as MATLAB has added a new dimension to vibration signal processing. This paper presents a method for analyzing motor vibration data using MATLAB. The method first pre-processes the vibration data to remove noise and baseline wander. Then, the frequency spectrum of the vibration signal is calculated using the Fourier transform. The frequency spectrum is then used to identify the dominant frequencies in the vibration signal. These dominant frequencies can be used to identify potential problems with the motor, such as bearing defects or misalignment. The method was studied on a set of vibration data collected from open source online data of a real motor. The results showed that the method was able to identify the dominant frequencies in the vibration signal accurately. The method was also able to identify the potential problems with the motor. This paper demonstrates the effectiveness of using MATLAB for analyzing motor vibration data. The method presented in this paper can be used to improve the reliability and efficiency of motor maintenance

    Crystallization and preliminary crystallographic studies of putative threonyl-tRNA synthetases from Aeropyrum pernix and Sulfolobus tokodaii.

    No full text
    International audienceThreonyl-tRNA synthetase (ThrRS) plays an essential role in protein synthesis by catalyzing the aminoacylation of tRNA(Thr) and editing misacylation. ThrRS generally contains an N-terminal editing domain, a catalytic domain and an anticodon-binding domain. The sequences of the editing domain in ThrRSs from archaea differ from those in bacteria and eukaryotes. Furthermore, several creanarchaea including Aeropyrum pernix K1 and Sulfolobus tokodaii strain 7 contain two genes encoding either the catalytic or the editing domain of ThrRS. To reveal the structural basis for this evolutionary divergence, the two types of ThrRS from the crenarchaea A. pernix and S. tokodaii have been overexpressed in Eschericha coli, purified and crystallized by the hanging-drop vapour-diffusion method. Diffraction data were collected and the structure of a selenomethionine-labelled A. pernix type-1 ThrRS crystal has been solved using the MAD method

    Elevated concentrations of serum matrix metalloproteinase-2 and -9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals

    Get PDF
    Background: Cardiovascular diseases (CVDs) and cancers are the major causes of chronic arsenic exposure-related morbidity and mortality. Matrix metalloproteinase-2 (MMP-2) and −9 (MMP-9) are deeply involved in the pathogenesis of CVDs and cancers. This study has been designed to evaluate the interactions of arsenic exposure with serum MMP-2 and MMP-9 concentrations especially in relation to the circulating biomarkers of CVDs. Methods: A total of 373 human subjects, 265 from arsenic-endemic and 108 from non-endemic areas in Bangladesh were recruited for this study. Arsenic concentrations in the specimens were measured by inductively coupled plasma mass spectroscopy (ICP-MS) and serum MMPs were quantified by immunoassay kits. Results: Serum MMP-2 and MMP-9 concentrations in arsenic-endemic population were significantly (p < 0.001) higher than those in non-endemic population. Both MMPs showed significant positive interactions with drinking water (rs = 0.208, p < 0.001 for MMP-2; rs = 0.163, p <0.01 for MMP-9), hair (rs= 0.163, p < 0.01 for MMP-2; rs = 0.173, p < 0.01 for MMP-9) and nail (rs= 0.160, p < 0.01 for MMP-2; rs = 0.182, p < 0.001 for MMP-9) arsenic of the study subjects. MMP-2 concentrations were 1.02, 1.03 and 1.05 times, and MMP-9 concentrations were 1.03, 1.06 and 1.07 times greater for 1 unit increase in log-transformed water, hair and nail arsenic concentrations, respectively, after adjusting for covariates (age, sex, BMI, smoking habit and hypertension). Furthermore, both MMPs were increased dose-dependently when the study subjects were split into three (≤10, 10.1-50 and > 50 μg/L) groups based on the regulatory upper limit of water arsenic concentration set by WHO and Bangladesh Government. MMPs were also found to be significantly (p < 0.05) associated with each other. Finally, the concentrations of both MMPs were correlated with several circulating markers related to CVDs. Conclusions: This study showed the significant positive associations and dose–response relationships of arsenic exposure with serum MMP-2 and MMP-9 concentrations. This study also showed the interactions of MMP-2 and MMP-9 concentrations with the circulating markers of CVDs suggesting the MMP-2 and MMP-9 -mediated mechanism of arsenic-induced CVDs

    Association between arsenic exposure and soluble thrombomodulin: A cross sectional study in Bangladesh

    No full text
    <div><p>Chronic exposure to arsenic is associated with increased morbidity and mortality from cardiovascular disease (CVD); however, plausible biomarker for early prediction and the underlying mechanism of arsenic-related CVD have not yet been clearly understood. Endothelial dysfunction plays a central role in the development of CVD. We hypothesized that endothelial damage or dysfunction is an important aspect and may be an early event of arsenic-related CVD. Soluble thrombomodulin (sTM) in serum is thought to be a specific and stable marker for endothelial damage or dysfunction. This study was designed to evaluate the association between chronic exposure to arsenic and sTM among human subjects in arsenic-endemic and non-endemic rural areas in Bangladesh. A total of 321 study subjects (217 from arsenic-endemic areas and 104 from a non-endemic area) were recruited. Subjects’ arsenic exposure levels (i.e., drinking water, hair and nail arsenic concentrations) were measured by Inductively Coupled Plasma Mass Spectroscopy. The subjects’ serum sTM levels were quantified by immunoassay kit. The average sTM levels of the subjects in arsenic-endemic and non-endemic areas were 4.58 ± 2.20 and 2.84 ± 1.29 (ng mL<sup>-1</sup>) respectively, and the difference was significant (<i>p</i><0.001). Arsenic exposure levels showed a significant (water arsenic: <i>r</i><sub><i>s</i></sub> = 0.339, <i>p</i><0.001, hair arsenic: <i>r</i><sub><i>s</i></sub> = 0.352, <i>p</i><0.001 and nail arsenic: <i>r</i><sub><i>s</i></sub> = 0.308, <i>p</i><0.001) positive associations with sTM levels. Soluble TM levels were higher in the higher exposure gradients if we stratified the subjects into tertile groups (low, medium and high) based on the arsenic concentrations of the subjects’ drinking water, hair and nails. Finally, increased levels of sTM were negatively correlated with high density lipoprotein cholesterol (HDL-C), and positively correlated with intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Results of this study show that chronic exposure to arsenic has mild to moderate association with sTM levels.</p></div

    Association between arsenic exposure and serum sTM levels.

    No full text
    <p>Log<sub>10</sub>-transformed values of water (μg L<sup>-1</sup>), hair (μg g<sup>-1</sup>), and nail (μg g<sup>-1</sup>) arsenic concentrations were used. <i>r</i><sub><i>s</i></sub> and <i>p</i>-values were from Spearman correlation coefficient test.</p
    corecore