12 research outputs found
The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population
genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is
expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two
housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup
(IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via
cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://
pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4
method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST
loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination;
although the latter still plays an important role in the bacteriumâs evolution. The secreted/cell-associated âvirulenceâ factors
tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to
housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal
existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of
the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P.
acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These
evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and
the effect such treatments may have on commensal lineages
Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination
Background: Infectious diseases and vaccines can occasionally cause new-onset or flare of immune-mediated diseases (IMDs). The adjuvanticity of the available SARS-CoV-2 vaccines is based on either TLR-7/8 or TLR-9 agonism, which is distinct from previous vaccines and is a common pathogenic mechanism in IMDs. Methods: We evaluated IMD flares or new disease onset within 28-days of SARS-CoV-2 vaccination at five large tertiary centres in countries with early vaccination adoption, three in Israel, one in UK, and one in USA. We assessed the pattern of disease expression in terms of autoimmune, autoinflammatory, or mixed disease phenotype and organ system affected. We also evaluated outcomes. Findings: 27 cases included 17 flares and 10 new onset IMDs. 23/27 received the BNT - 162b2 vaccine, 2/27 the mRNA-1273 and 2/27 the ChAdOx1 vaccines. The mean age was 54.4 Âą 19.2 years and 55% of cases were female. Among the 27 cases, 21 (78%) had at least one underlying autoimmune/rheumatic disease prior the vaccination. Among those patients with a flare or activation, four episodes occurred after receiving the second-dose and in one patient they occurred both after the first and the second-dose. In those patients with a new onset disease, two occurred after the second-dose and in one patient occurred both after the first (new onset) and second-dose (flare). For either dose, IMDs occurred on average 4 days later. Of the cases, 20/27 (75%) were mild to moderate in severity. Over 80% of cases had excellent resolution of inflammatory features, mostly with the use of corticosteroid therapy. Other immune-mediated conditions included idiopathic pericarditis (n = 2), neurosarcoidosis with small fiber neuropathy (n = 1), demyelination (n = 1), and myasthenia gravis (n = 2). In 22 cases (81.5%), the insurgence of Adverse event following immunization (AEFI)/IMD could not be explained based on the drug received by the patient. In 23 cases (85.2%), AEFI development could not be explained based on the underlying disease/co-morbidities. Only in one case (3.7%), the timing window of the insurgence of the side effect was considered not compatible with the time from vaccine to flare. Interpretation: Despite the high population exposure in the regions served by these centers, IMDs flares or onset temporally-associated with SARS-CoV-2 vaccination appear rare. Most are moderate in severity and responsive to therapy although some severe flares occurred. Funding: none
Recommended from our members
MDA5-autoimmunity and interstitial pneumonitis contemporaneous with the COVID-19 pandemic (MIP-C)
Background
Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5+-DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 is an RNA sensor and a key pattern recognition receptor for the SARS-CoV-2 virus.
Methods
This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018 and December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5+-DM outbreak.
Findings
Sixty new anti-MDA5+, but not other MSAs surged between 2020 and 2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response.
Interpretation
A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms.
Funding
This work was supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), and in part by the National Institutes of Health (NIH) grant R01-AI155696 and pilot awards from the UC Office of the President (UCOP)-RGPO (R00RG2628, R00RG2642 and R01RG3780) to P.G. S.S was supported in part by R01-AI141630 (to P.G) and in part through funds from the American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists
MDA5-autoimmunity and Interstitial Pneumonitis Contemporaneous with the COVID-19 Pandemic (MIP-C)
Background: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5 + -DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 senses single-stranded RNA and is a key pattern recognition receptor for the SARS-CoV-2 virus.
Methods: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018-December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5 + -DM outbreak.
Results: Sixty new anti-MDA5+, but not other MSAs surged between 2020-2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. Few (8/60) had a prior history of COVID-19, whereas 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response.
Conclusions: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms
Non-purulent low-grade infection as cause of pain following shoulder surgery: preliminary results
Low-grade infection was systematically searched for in all revision shoulder surgeries by harvesting tissue samples. Ten consecutive patients were identified with a non-purulent low-grade infection of the shoulder. All of these patients suffered from pain and eight were stiff. Preoperative aspiration in eight patients yielded bacterial growth in only one case. Serum C-reactive protein levels were normal in seven out of 10 cases. Propionibacterium acnes was identified in seven, coagulase-negative Staphylococcus in two and Staphylococcus saccharolyticus in one case. The delay between harvesting the tissue samples and detection of bacterial growth averaged eight days (range, 2-17). After debridement and antibiotic treatment for a mean of 4.5 months, tissue samples were repeatedly harvested in nine patients due to persistent pain. The infection was microbiologically eradicated in six out of nine cases that had a repeated biopsy. However, nine out of 10 patients continued to suffer from moderate to severe pain. Low-grade infection of the shoulder can be a cause of persistent pain and stiffness. The results of antibiotic treatment are disappointing. Further studies are necessary to analyse this difficult pathology
Relationship between annular tear and presence of Propionibacterium acnes in lumbar intervertebral disc
PURPOSE: Propionibacterium acnes (P. acnes) in the intervertebral disc may result in low back pain. The purpose of this study was to determine how P. acnes accesses the disc.
METHODS: Patients with low back pain and/or sciatica were examined using X-ray and MRI before surgery. The intervertebral disc space height was measured on X-ray image. Disc and muscle samples were obtained from 46 patients undergoing discectomy at the lumbar spine. The tear of annulus was inspected before discectomy. In the disc and muscle tissue cultures, 16S rDNA gene specific for P. acnes was examined using PCR.
RESULTS: The discs from 11 (23.9 %) patients were identified as 16S rDNA positive, in which two patients also had 16S rDNA in their muscles. 16S rDNA gene was significantly more likely to appear in the discs with annular tear than those without tear (P \u3c 0.05). The disc space height was significantly decreased when the disc contained P. acnes.
CONCLUSION: P. acnes is significantly more likely to be present in herniated discs with an annular tear than in herniated discs without such a tear. Since in the vast majority of these cases, no P. acnes was found in control muscle samples, a true infection with P. acnes is far more likely than a contamination