1,964 research outputs found

    Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs

    Full text link
    In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: 1. qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); 2. quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.Comment: 24 pages, full version to the conference paper on POPL 201

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Strong, Weak and Branching Bisimulation for Transition Systems and Markov Reward Chains: A Unifying Matrix Approach

    Full text link
    We first study labeled transition systems with explicit successful termination. We establish the notions of strong, weak, and branching bisimulation in terms of boolean matrix theory, introducing thus a novel and powerful algebraic apparatus. Next we consider Markov reward chains which are standardly presented in real matrix theory. By interpreting the obtained matrix conditions for bisimulations in this setting, we automatically obtain the definitions of strong, weak, and branching bisimulation for Markov reward chains. The obtained strong and weak bisimulations are shown to coincide with some existing notions, while the obtained branching bisimulation is new, but its usefulness is questionable

    Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs

    Full text link
    Computing reachability probabilities is a fundamental problem in the analysis of probabilistic programs. This paper aims at a comprehensive and comparative account on various martingale-based methods for over- and under-approximating reachability probabilities. Based on the existing works that stretch across different communities (formal verification, control theory, etc.), we offer a unifying account. In particular, we emphasize the role of order-theoretic fixed points---a classic topic in computer science---in the analysis of probabilistic programs. This leads us to two new martingale-based techniques, too. We give rigorous proofs for their soundness and completeness. We also make an experimental comparison using our implementation of template-based synthesis algorithms for those martingales

    Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface

    Get PDF
    Electron-transfer reactions at ambient aqueous interfaces represent one of the most fundamental and ubiquitous chemical reactions. Here the dynamics of the charge transfer to solvent (CTTS) reaction from iodide was probed at the ambient water/air interface by phase-sensitive transient second-harmonic generation. Using the three allowed polarization combinations, distinctive dynamics assigned to the CTTS state evolution and to the subsequent solvating electron-iodine contact pair have been resolved. The CTTS state is asymmetrically solvated in the plane of the surface, while the subsequent electron solvation dynamics are very similar to those observed in the bulk, although slightly faster. Between 3 and 30 ps, a small phase shift distinguishes an electron bound in a contact pair with iodine and a free hydrated electron at the water/air interface. Our results suggest that the hydrated electron is fully solvated in a region of reduced water density at the interface

    Optimized preparation of quantum states by conditional measurements

    Get PDF
    We introduce a general strategy for preparation of arbitrary quantum states via optimal control of repeated conditional measurements. The effectiveness of this strategy in generating finite Fock-state superpositions with a high level of confidence from experimentally accessible coherent states is demonstrated for the simple and well known Jaynes-Cummings model dynamics

    Microscopic theory for the light-induced anomalous Hall effect in graphene

    Full text link
    We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties

    Perfect Information Stochastic Priority Games

    Get PDF
    International audienceWe introduce stochastic priority games - a new class of perfect information stochastic games. These games can take two different, but equivalent, forms. In stopping priority games a play can be stopped by the environment after a finite number of stages, however, infinite plays are also possible. In discounted priority games only infinite plays are possible and the payoff is a linear combination of the classical discount payoff and of a limit payoff evaluating the performance at infinity. Shapley games and parity games are special extreme cases of priority games

    Value Iteration for Long-run Average Reward in Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Long-run average rewards provide a mathematically elegant formalism for expressing long term performance. Value iteration (VI) is one of the simplest and most efficient algorithmic approaches to MDPs with other properties, such as reachability objectives. Unfortunately, a naive extension of VI does not work for MDPs with long-run average rewards, as there is no known stopping criterion. In this work our contributions are threefold. (1) We refute a conjecture related to stopping criteria for MDPs with long-run average rewards. (2) We present two practical algorithms for MDPs with long-run average rewards based on VI. First, we show that a combination of applying VI locally for each maximal end-component (MEC) and VI for reachability objectives can provide approximation guarantees. Second, extending the above approach with a simulation-guided on-demand variant of VI, we present an anytime algorithm that is able to deal with very large models. (3) Finally, we present experimental results showing that our methods significantly outperform the standard approaches on several benchmarks
    corecore