1,964 research outputs found
Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs
In this paper, we consider termination of probabilistic programs with
real-valued variables. The questions concerned are:
1. qualitative ones that ask (i) whether the program terminates with
probability 1 (almost-sure termination) and (ii) whether the expected
termination time is finite (finite termination); 2. quantitative ones that ask
(i) to approximate the expected termination time (expectation problem) and (ii)
to compute a bound B such that the probability to terminate after B steps
decreases exponentially (concentration problem).
To solve these questions, we utilize the notion of ranking supermartingales
which is a powerful approach for proving termination of probabilistic programs.
In detail, we focus on algorithmic synthesis of linear ranking-supermartingales
over affine probabilistic programs (APP's) with both angelic and demonic
non-determinism. An important subclass of APP's is LRAPP which is defined as
the class of all APP's over which a linear ranking-supermartingale exists.
Our main contributions are as follows. Firstly, we show that the membership
problem of LRAPP (i) can be decided in polynomial time for APP's with at most
demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with
angelic non-determinism; moreover, the NP-hardness result holds already for
APP's without probability and demonic non-determinism. Secondly, we show that
the concentration problem over LRAPP can be solved in the same complexity as
for the membership problem of LRAPP. Finally, we show that the expectation
problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's
without probability and non-determinism (i.e., deterministic programs). Our
experimental results demonstrate the effectiveness of our approach to answer
the qualitative and quantitative questions over APP's with at most demonic
non-determinism.Comment: 24 pages, full version to the conference paper on POPL 201
Stochastic Invariants for Probabilistic Termination
Termination is one of the basic liveness properties, and we study the
termination problem for probabilistic programs with real-valued variables.
Previous works focused on the qualitative problem that asks whether an input
program terminates with probability~1 (almost-sure termination). A powerful
approach for this qualitative problem is the notion of ranking supermartingales
with respect to a given set of invariants. The quantitative problem
(probabilistic termination) asks for bounds on the termination probability. A
fundamental and conceptual drawback of the existing approaches to address
probabilistic termination is that even though the supermartingales consider the
probabilistic behavior of the programs, the invariants are obtained completely
ignoring the probabilistic aspect.
In this work we address the probabilistic termination problem for
linear-arithmetic probabilistic programs with nondeterminism. We define the
notion of {\em stochastic invariants}, which are constraints along with a
probability bound that the constraints hold. We introduce a concept of {\em
repulsing supermartingales}. First, we show that repulsing supermartingales can
be used to obtain bounds on the probability of the stochastic invariants.
Second, we show the effectiveness of repulsing supermartingales in the
following three ways: (1)~With a combination of ranking and repulsing
supermartingales we can compute lower bounds on the probability of termination;
(2)~repulsing supermartingales provide witnesses for refutation of almost-sure
termination; and (3)~with a combination of ranking and repulsing
supermartingales we can establish persistence properties of probabilistic
programs.
We also present results on related computational problems and an experimental
evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page
Strong, Weak and Branching Bisimulation for Transition Systems and Markov Reward Chains: A Unifying Matrix Approach
We first study labeled transition systems with explicit successful
termination. We establish the notions of strong, weak, and branching
bisimulation in terms of boolean matrix theory, introducing thus a novel and
powerful algebraic apparatus. Next we consider Markov reward chains which are
standardly presented in real matrix theory. By interpreting the obtained matrix
conditions for bisimulations in this setting, we automatically obtain the
definitions of strong, weak, and branching bisimulation for Markov reward
chains. The obtained strong and weak bisimulations are shown to coincide with
some existing notions, while the obtained branching bisimulation is new, but
its usefulness is questionable
Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs
Computing reachability probabilities is a fundamental problem in the analysis
of probabilistic programs. This paper aims at a comprehensive and comparative
account on various martingale-based methods for over- and under-approximating
reachability probabilities. Based on the existing works that stretch across
different communities (formal verification, control theory, etc.), we offer a
unifying account. In particular, we emphasize the role of order-theoretic fixed
points---a classic topic in computer science---in the analysis of probabilistic
programs. This leads us to two new martingale-based techniques, too. We give
rigorous proofs for their soundness and completeness. We also make an
experimental comparison using our implementation of template-based synthesis
algorithms for those martingales
Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface
Electron-transfer reactions at ambient aqueous interfaces represent one of the most fundamental and ubiquitous chemical reactions. Here the dynamics of the charge transfer to solvent (CTTS) reaction from iodide was probed at the ambient water/air interface by phase-sensitive transient second-harmonic generation. Using the three allowed polarization combinations, distinctive dynamics assigned to the CTTS state evolution and to the subsequent solvating electron-iodine contact pair have been resolved. The CTTS state is asymmetrically solvated in the plane of the surface, while the subsequent electron solvation dynamics are very similar to those observed in the bulk, although slightly faster. Between 3 and 30 ps, a small phase shift distinguishes an electron bound in a contact pair with iodine and a free hydrated electron at the water/air interface. Our results suggest that the hydrated electron is fully solvated in a region of reduced water density at the interface
Optimized preparation of quantum states by conditional measurements
We introduce a general strategy for preparation of arbitrary quantum states via optimal control of repeated conditional measurements. The effectiveness of this strategy in generating finite Fock-state superpositions with a high level of confidence from experimentally accessible coherent states is demonstrated for the simple and well known Jaynes-Cummings model dynamics
Microscopic theory for the light-induced anomalous Hall effect in graphene
We employ a quantum Liouville equation with relaxation to model the recently
observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of
circularly polarized light. In the weak-field regime, we demonstrate that the
Hall effect originates from an asymmetric population of photocarriers in the
Dirac bands. By contrast, in the strong-field regime, the system is driven into
a non-equilibrium steady state that is well-described by topologically
non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates
from the combination of a population imbalance in these dressed bands together
with a smaller anomalous velocity contribution arising from their Berry
curvature. This robust and general finding enables the simulation of electrical
transport from light-induced Floquet-Bloch bands in an experimentally relevant
parameter regime and creates a pathway to designing ultrafast quantum devices
with Floquet-engineered transport properties
Perfect Information Stochastic Priority Games
International audienceWe introduce stochastic priority games - a new class of perfect information stochastic games. These games can take two different, but equivalent, forms. In stopping priority games a play can be stopped by the environment after a finite number of stages, however, infinite plays are also possible. In discounted priority games only infinite plays are possible and the payoff is a linear combination of the classical discount payoff and of a limit payoff evaluating the performance at infinity. Shapley games and parity games are special extreme cases of priority games
Value Iteration for Long-run Average Reward in Markov Decision Processes
Markov decision processes (MDPs) are standard models for probabilistic
systems with non-deterministic behaviours. Long-run average rewards provide a
mathematically elegant formalism for expressing long term performance. Value
iteration (VI) is one of the simplest and most efficient algorithmic approaches
to MDPs with other properties, such as reachability objectives. Unfortunately,
a naive extension of VI does not work for MDPs with long-run average rewards,
as there is no known stopping criterion. In this work our contributions are
threefold. (1) We refute a conjecture related to stopping criteria for MDPs
with long-run average rewards. (2) We present two practical algorithms for MDPs
with long-run average rewards based on VI. First, we show that a combination of
applying VI locally for each maximal end-component (MEC) and VI for
reachability objectives can provide approximation guarantees. Second, extending
the above approach with a simulation-guided on-demand variant of VI, we present
an anytime algorithm that is able to deal with very large models. (3) Finally,
we present experimental results showing that our methods significantly
outperform the standard approaches on several benchmarks
- …