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Abstract

We introduce stochastic priority games — a new class of perfect information
stochastic games. These games can take two different, but equivalent, forms. In
stopping priority games a play can be stopped by the environment after a finite
number of stages, however, infinite plays are also possible. In discounted priority
games only infinite plays are possible and the payoff is a linear combination of
the classical discount payoff and of a limit payoff evaluating the performance at
infinity. Shapley games [12] and parity games [6] are special extreme cases of
priority games.

1 Introduction

Recently de Alfaro, Henzinger and Majumdar[4] introduced a new variant of µ-
calculus: discounted µ-calculus. As it is known since the seminal paper [6] of Emerson
and Jutla µ-calculus is strongly related to parity games and this relationship is pre-
served even for stochastic games, [5]. In this context it is natural to ask if there is a
class of games that corresponds to discounted µ-calculus of [4]. A partial answer to
this question was given in [8], where an appropriate class of infinite discounted games
was introduced. However, in [8], only deterministic systems were considered and much
more challenging problem of stochastic games was left open. In the present paper we
return to the problem but in the context perfect information stochastic games. The
most basic and usually non-trivial question is if the games that we consider admit
“simple” optimal strategies for both players. We give a positive answer, for all games
presented in this paper both players have pure stationary optimal strategies. Since
our games contain parity games as a very special case, our paper extends the result
known for perfect information parity games [2, 10, 3, 14].

However, we have an objective which is larger than just transferring to stochastic
games the results known for deterministic systems. Parity games are used (directly
or through an associated logic) in verification. Conditions that are verified often
do not depend on any finite prefix of the play (take as a typical example a simple
condition like “A wins if we visit infinitely often some set X of states”). However,
certainly all real systems have a finite life span thus we can ask what is the meaning
of infinite games when they are used to examine such systems. Notice that the same
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question arises in classical game theory [11]. The obvious answer is that the life span
is finite but unknown or sufficiently long and thus infinite games are a convenient
approximation of finite games. However, what finite games are approximated by
parity games? Notice that for the games like mean-payoff games that are used in
economics the answer is simple: infinite mean-payoff games approximate finite mean-
payoff games of long or unknown duration. But we do not see any obvious candidate
for “finite parity games”. Suppose that C is a parity condition and fC a payoff
mapping associated with C, i.e. fC maps to 1 (win) all infinite sequence of states that
satisfy C and to 0 all “loosing” sequences. Now we can look for a sequence fn, n ∈ N,
of payoff functions, such that each fn, defined for state sequences of length n, gives a
payoff for games of length n and such that for each infinite sequence s0s1 . . . of states
fn(s0 . . . sn−1) −−−−→

n→∞
fC(s0s1 . . .). However, except for very special parity conditions

C, such payoff mappings fn do not exist, thus parity games cannot approximate finite
games in the same way as infinite mean-payoff games approximate finite mean-payoff
games.

Nevertheless, it turns out that parity games approximate finite games, however
“finite” does not mean here that the number of steps is fixed, instead these games are
finite in the sense that they stop with probability 1. In Section 4 we present a class
of priority stopping games. In the simplest case, when the stopping probabilities are
positive for all states, stopping games are stochastic games defined by Shapley [12].
However, we examine also stopping games for which stopping probabilities are positive
only for some states. One of the results of this paper can be interpreted in the following
way: parity games are a limit of stopping games when the stopping probabilities tend
to 0 but all at the same time but rather one after another, in the order determined
by priorities.

2 Arenas and perfect information games

Perfect information stochastic games are played by two players, tha we call player 1
and player 2. We assume that player i ∈ {1, 2} controls a finite set Si of states, S1

and S2 are disjoint and S = S1 ∪ S2 is the set of all states.
With each state s ∈ S is associated a finite non-empty set As of actions that are

available at s and we set A = ∪s∈SAs to be the set of all actions.
If the current state is s ∈ Si then player i controlling this state chooses an available

action a ∈ Si and, with a probability p(s′|s, a), the systems changes its state to
s′ ∈ S. Thus p(·|s, a), s ∈ S, a ∈ As, are transition probabilities satisfying the usual
conditions: 0 ≤ p(s′|s, a) ≤ 1 and

∑

s′∈S p(s′|s, a) = 1.
Let Hω be the set of histories, i.e. the set of all infinite sequences s0a0s1a1s2 . . .

alternating states and actions. Assuming that the sets S and A are equipped with the
discrete topology, we equip Hω with the product topology, i.e. the smallest topology
for which the mappings

Si : Hω → S, Si : Hω ∋ s0a0 . . . siai . . . 7→ si

and
Ai : Hω → A, Ai : Hω ∋ s0a0 . . . siai . . . 7→ ai
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are continuous. Thus (Si)i∈N and (Ai)i∈N, are stochastic processes on the probability
space (Hω,B), where B is Borel σ-algebra generated by open subsets of Hω.

The data consisting of the state sets S1, S2, available actions (As)s∈S and transi-
tion probabilities p(·, s, a) is an arena A.

Let u : Hω → R be a bounded Borel measurable mapping. We interpret u(h), h ∈
Hω, as the payoff obtained by player 1 from player 2 after an infinite play h.

A couple (A, u) consisting of an arena and a payoff mapping is a perfect information
stochastic game.

Let H+
i = (SA)∗Si, i ∈ {1, 2}, be the set of finite non-empty histories terminating

at a state controlled by player i. A strategy for player i is a family of conditional proba-
bilities σ(a|hn) for all hn = s0a0 . . . sn ∈ H+

i and a ∈ Aan
. Intuitively, σ(a|s0a0 . . . sn)

gives the probability that player i controlling the last state sn chooses an (available)
action a, while the sequence hn describes the first n steps of the game. As usual
0 ≤ σ(a|s0a0 . . . sn) ≤ 1 and

∑

a∈Asn
σ(a|s0a0 . . . sn) = 1.

A strategy σ is said to be pure if for each finite history hn = s0a0 . . . sn ∈ H+
1

there is an action a ∈ Asn
such that σ(a|hn) = 1, i.e. no randomization is used

to choose an action to execute. A strategy σ is stationary if for each finite history
hn = s0a0 . . . sn ∈ H+

1 , σ(·|hn) = σ(·|sn), i.e. the probability distribution used to
choose actions depends only on the last state.

Notice that pure stationary strategies for player i can be identified with mappings
σ : Si → A such that σ(s) ∈ As for s ∈ Si.

In the sequel we shall use σ, possibly with subscripts or superscripts, to denote a
strategy of player 1. On the other hand, τ will always denote a strategy of player 2.

Given and initial state s, strategies σ, τ of both players determine a unique prob-
ability measure P

s
σ,τ on (Hω ,B), [7].

The expectation corresponding to the probability measure P
s
σ,τ is denoted E

s
σ,τ .

Thus E
s
σ,τ (u) gives the expected payoff obtained by player 1 from player 2 in the

game (A, u) starting at state s when the players use strategies σ, τ respectively. If
supσ infτ E

s
σ,τ (u) = infτ supσ E

s
σ,τ (u) for each state s then the quantity appearing on

both side of this equality is the value of the game (for initial state s) and is denoted
vals(u).

Strategies σ♯ and τ ♯ of players 1, 2 are optimal in the game (A, u) if for each state
s ∈ S and for all strategies σ ∈ Σ, τ ∈ T

E
s
σ,τ♯ [u] ≤ E

s
σ♯,τ♯ [u] ≤ E

s
σ♯,τ [u] .

If σ♯ and τ ♯ are optimal strategies then vals(u) = E
s
σ♯,τ♯ [u], i.e. the expected payoff

obtained when both players use optimal strategies is equal to the value of the game.

3 Priority games

Starting from this moment we assume that each arena A is equipped with a priority
mapping

ϕ : S → {1, . . . , k} (1)

from the set S of states to the set {1, . . . , k} of (positive integer) priorities. The
composition

ϕn = ϕ ◦ Sn, , n ∈ N , (2)
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ϕn : Hω → {1, . . . , k}, gives therefore a stochastic process with values in {1, . . . , k}.
Then lim infi ϕi is a random variable

Hω ∋ h 7→ lim inf
i

ϕi(h)

giving for each infinite history h ∈ Hω its priority which the smallest priority visited
infinitely often in h (we assume that {1, . . . , k} is equipped with the usual order on
integers and lim inf is taken for this order). From this moment onward, we assume
that there is a fixed a reward mapping

r : {1, . . . , k} → [0, 1] (3)

from priorities to the interval [0, 1].
The priority payoff mapping u : Hω → [0, 1] is defined as

u(h) = r(lim inf
i

ϕi(h)), h ∈ Hω . (4)

Thus, in the priority game (A, u), the payoff received by player 1 from player 2 is the
reward corresponding to the minimal priority visited infinitely often. If r maps odd
priorities to 1 and even priorities to 0 then we get a parity game.

4 Stopping priority games

In the sequel we assume that besides the priority and reward mappings (1) and (3)
we have also a mapping

λ : {1, . . . , k} → [0, 1] (5)

from priorities to the interval [0, 1].
We modify the rules of the priority game of Section 3 in the following way.
Every time a state s is visited the game can stop with probability 1 − λ(ϕ(s)),

where ϕ(s) is the priority of s. If the game stops at s then player 1 receives from
player 2 the payoff r(ϕ(s)). If the game does not stop then the player controlling s
chooses an action a ∈ As and we go to a state t with probability p(t|s, a). (Thus
p(t|s, a) should now be interpreted as the probability to go to t under the condition
that the games does not stop.) The rules above determine the payoff in the case when
the games stops at some state s. However, λ can be 1 for some states (priorities)
and then it is possible to have also infinite plays with a positive probability. For such
infinite plays the payoff is calculated as in priority games of the preceding section.

Let us note that if λ(p) = 1 for all priorities p ∈ {1, . . . , k} then actually we never
stop and the game described above is the same as the priority game of the preceding
section.

On the other hand, if λ(p) < 1 for all priorities p, i.e. the stopping probabilities are
positive for all states, then the game will stop with probability 1. Shapley [12] proved
that for such games both players have optimal stationary strategies. In fact Shapley
considered general stochastic games while we limit ourselves to perfect information
stochastic games and for such games the optimal strategies constructed in [12] are
not only stationary but also pure.
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Theorem 1 (Shapley 1953). If, for all priorities i, λ(i) < 1 then both players have
pure stationary optimal strategies in the priority stopping game.

Stopping games have an appealing intuitive interpretation but they are not con-
sistent with the framework fixed in Section 2, where the probability space consisted
of infinite histories only. This obstacle can be removed in the following way. For each
priority i ∈ {1, . . . , k} we create a new “stopping” state i♯ that we add to the arena
A. The priority of i♯ is set to i, ϕ(i♯) = i. The set of newly created states is denoted
S♯. There is only one action available at each i♯ and executing this action we return
immediately to i♯ with probability 1, it is impossible to leave a stopping state. Note
also that since there is only one action available at i♯ it does not matter which of the
two players controls “stopping” states. For each non-stopping state s ∈ S we modify
the transition probabilities. Formally we define new transition probabilities p♯(·|·, ·)
by setting, for s, t ∈ S, a ∈ As,

p♯(t|s, a) = λ(ϕ(s)) · p(t|s, a)

and

p♯(i♯|s, a) =

{

1 − λ(ϕ(s)) if i = ϕ(s),

0 otherwise .

Let us note by A♯
λ the arena obtained from A in this way. It is worth noticing that,

even if the set of finite histories of A♯
λ strictly contains the set of finite histories of

A, we can identify the strategies in both arenas. In fact, given a strategy for arena
A there is only one possible way to complete it to a strategy in A♯

λ since for finite

histories in A♯
λ that end in a stopping state i♯ any strategy chooses always the unique

action available at i♯. Clearly, playing a stopping priority game on A is the same as
playing priority game on A♯

λ: stopping at state s in A yields the same payoff as an

infinite history in A♯
λ that loops at i♯, where i = ϕ(s).

5 Discounted priority games

The aim of this section is to introduce a new class of inifinite games that are equivalent
to stopping priority games.

As previously, we suppose that arenas are equipped with a priority mapping (1)
and that a reward mapping (3) is fixed.

On the other hand, the mapping λ of (5), although also present, has now another
interpretation, it does not define stopping probabilities but it provides discount factors
applied to one-step rewards.

Let
ri = r ◦ ϕi and λi = λ ◦ ϕi, i ∈ N , (6)

be stochastic processes giving respectively the reward and the discount factor at stage
i. Then the payoff mapping uλ : Hω → R of discounted priority games is defined as

uλ =
∞
∑

i=0

λ0 · · ·λi−1(1 − λi)ri + (
∏

i=0

λi) · r(lim inf
n

ϕn) . (7)
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Thus uλ is composed of two parts, the discount part

udisc
λ =

∞
∑

i=0

λ0 · · ·λi−1(1 − λi)ri (8)

and the limit part

ulim
λ = (

∞
∏

i=0

λi) · r(lim inf
n

ϕn) . (9)

Some remarks concerning this definition are in order. Let

T = inf{i | λj = 1 for all j ≥ i} . (10)

Since, by convention, the infimum of the empty set is ∞, {T = ∞} consists of of all
infinite histories h ∈ Hω for which λi < 1 for infinitely many i. Thus we can rewrite
uλ as:

uλ =
∑

i<T

λ0 · · ·λi−1(1 − λi)ri + (
∏

i<T

λi) · r(lim inf
n

ϕn) . (11)

Moreover, if T = ∞ then the product
∏

i<T λi, containing infinitely many factors

smaller than 1, is equal to 0 and for such infinite histories the limit part ulim
λ disappears

while the discount part is (a sum of) an infinite series. The other extreme case is
T = 0, i.e. when the discount factor is 1 for all visited states. Then it is the the
discount part that disappears from 11 and the payoff is just r(lim infn ϕn), the same
as for priority games of Section 3.

Let (A, uλ) be a discounted priority game on A. As explained in the preceding
section, a stopping priority game on A with stopping probabilities given by means
of λ can be identified with the priority game (A♯

λ, u) on the transformed arena A♯
λ.

As noted also in the preceding section, there is a natural correspondence allowing to
identify strategies in both arenas. We shall note by P

♯s
σ,τ the probability generated

by strategies σ and τ on A♯
λ and P

s
σ,τ the similar probability generated by the same

strategies on A. The corresponding expectations are denoted E
♯s
σ,τ and E

s
σ,τ . Having

all this facts in mind, the following proposition shows that stopping priority games
and discounted priority games are equivalent in the sense that the same strategies
yield the same payoffs in both games:

Proposition 2. For all strategies σ, τ of players 1, 2 and all states s ∈ S, E
♯s
σ,τ [u] =

E
s
σ,τ [uλ].

Proof. (sketch) Let T = inf{i | Si ∈ S♯} be the first moment in the game (A♯
λ, u)

when we enter a stopping state. Direct calculations show that P
♯s
σ,τ (Si+1 = si+1|S0 =

s0, . . . ,Si = si) = λ(ϕ(si))P
s
σ,τ (Si+1 = si+1|S0 = s0, . . . ,Si = si) if all states

s0, . . . , si, si+1 are not stopping. This can be used to show that1 E
♯s
σ,τ [u; T = ∞] =

E
s
σ,τ [ulim

λ ]. On the other hand, E
♯s
σ,τ [u; T = m] = E

s
σ,τ [λ0 · · ·λm−1(1 − λm)rm], im-

plying E
♯s
σ,τ [u; T < ∞] = E

s
σ,τ [udisc

λ ].

1By E
♯s
σ,τ [u;A] we denote the integral of u over the set A.
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We can note that in the special case when all discount factors are strictly smaller
than 1 (i.e. all stopping probabilities are greater than 0) Proposition 2 reduces to
a well-known folklore fact: stopping (Shapley) games[12] and discounted games are
equivalent.

6 Limits of priority discounted games

The main aim of this section is to prove that discounted priority games (A, uλ) admit
pure stationary optimal strategies for both players. Of course, due to Shapley’s theo-
rem, we already know that this is true for discounted mappings λ such that λ(i) < 1
for all priorities i. Our proof will use in an essential way the concept of uniformly
optimal strategies, which is of independent interest.

Let λ1, . . . , λm, 1 ≤ m ≤ k, be a sequence of constants, all belonging to the
right-open interval [0, 1). Let λ be the following discount mapping:

for all i ∈ [1..k], λ(i) =

{

λi if i ≤ m,

1 if i > m.
(12)

In the sequel we shall write u
(k)
λ1,...,λm

to denote the discounted priority payoff mapping
uλ, where λ is given by (12). (Note, however, that one should not confuse λ1, λ2, . . .
which are used to denote real numbers from [0, 1) with bold λ1, λ2, . . . that are used
to denote a stochastic process (6)).

It is worth noticing that in fact we can limit ourselves to discounted priority payoff

mappings of the form u
(k)
λ1,...,λm

. Let us say that λ : {1, . . . , k} → [0, 1] is regular if,
for each i, λ(i) = 1 implies λ(j) = 1 for all j > i. Let λ be any discount mapping and
let π : {1, . . . , k} → {1, . . . , k} the unique permutation of {1, . . . , k} such π(i) < π(j)
iff one of the following conditions holds: (A) i < j and λ(i) = λ(j) = 1, (B) i < j
and λ(i) < 1 and λ(j) < 1, (C) λ(i) < λ(j) = 1. Define λ′ by setting λ′(π(i)) = λ(i).
Then λ′ is regular (because of (C)) and for each h ∈ Hω, uλ(h) = uλ′(h).

Which strategies are optimal in the game (A, u
(k)
λ1,...,λm

) usually depends heavily
on the discount factors λ1, . . . , λm. But, in an important paper [1] Blackwell observed
that in discounted Markov decision processes optimal strategies are independent of
the discount factor if this factor is close to 1. This leads to the concept of uniformly
optimal strategies:

Definition 3. Let A be a finite arena. Let us fix values of the first m − 1 discount
factors λ1, . . . , λm−1 ∈ [0, 1). Strategies σ, τ for players 1, 2 are said to be uniformly
optimal for λ1, . . . , λm−1 if there exists an ǫ > 0 (that can depend on λ1, . . . , λm−1)

such that σ, τ are optimal for all games (A, u
(k)
λ1,...,λm−1,λm

) with 1 − ǫ < λm < 1.

Now we are prepared to announce the main result of the paper:

Theorem 4. For each m ∈ {1, . . . , k} the games (A, u
(k)
λ1,...,λm−1,λm

) admit pure sta-

tionary uniformly optimal strategies for both players. Moreover, if (σ♯, τ ♯) is a pair

of such strategies then σ♯, τ ♯ are also optimal in the game (A, u
(k)
λ1,...,λm−1

).

Proposition 5 below establishes the following chain of implications:

if (A, u
(k)
λ1,...,λm

) admits pure stationary optimal strategies then (A, u
(k)
λ1,...,λm

) admits
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pure stationary uniformly optimal strategies which in turn implies that (A, u
(k)
λ1,...,λm−1

)

admits pure stationary optimal strategies. Since, by Shapley’s theorem, (A, u
(k)
λ1,...,λk

)
has pure stationary optimal strategies, trivial backward induction on m will yields
immediately Theorem 4.

Proposition 5. Let A be a finite arena with states labelled by priorities from {1, . . . , k}.
Let m ∈ {1, . . . , k} and λ1, . . . , λm−1 be a sequence of discount factors for priorities

1, . . . , m, all belonging to the interval [0, 1). Suppose that the game (A, u
(k)
λ1,...,λm

) has
pure stationary strategies for both players. Then the following conditions hold:

(i) for both players there exist pure stationary uniformly optimal strategies in the

game (A, u
(k)
λ1,...,λm−1,λm

),

(ii) there exists an ǫ > 0 such that, for each pair of pure stationary strategies (σ, τ)

for players 1 and 2, whenever σ and τ are optimal in the game (A, u
(k)
λ1,...,λm−1,λm

)

for some 1− ǫ < λm < 1 then σ and τ optimal for all games (A, u
(k)
λ1,...,λm−1,λm

)
with 1 − ǫ < λm < 1, in particular σ and τ are uniformly optimal,

(iii) if σ, τ are pure stationary uniformly optimal strategies in the game (A, u
(k)
λ1,...,λm

)

then they are optimal in the game (A, u
(k)
λ1,...,λm−1

),

(iv)

lim
λm↑1

vals(A, u
(k)
λ1,...,λm

) = vals(A, u
(k)
λ1,...,λm−1

) , (13)

where vals(A, u
(k)
λ1,...,λm

) is the value of the game (A, u
(k)
λ1,...,λm

) for an initial
state s.

Lemma 6. Suppose that λ1, . . . , λk, the discount factors for all priorities, are strictly
smaller than 1. Let σ, τ be pure stationary strategies for players 1 and 2 in the game

(A, u
(k)
λ1,...,λk

). Then the expectation E
s
σ,τ [u

(k)
λ1,...,λk

] is a rational function of λ1, . . . , λn

bounded on [0, 1)k.

Proof. If we fix pure stationary strategies then we get a finite Markov chain with
discounted evaluation. In this context the result is standard, at least for one discount
factor, see for example [9]. For several discount factors the proof is identical and given
in detail in Appendix C.

The proof of the following lemma is given in Appendix B.

Lemma 7. Let f(x1, . . . , xk) be a rational function well-defined and bounded on
[0, 1)k. Then, for each 0 ≤ m < k, the iterated limit limxm+1↑1 . . . limxk↑1 f(x1, . . . , xk)
exists and is finite. Moreover, for every fixed (x1, . . . , xm−1) ∈ [0, 1)m−1 there exists
ǫ > 0 such that the one-variable mapping

xm 7→ lim
xm+1↑1

. . . lim
xk↑1

f(x1, . . . , xm−1, xm, xm+1, . . . , xk)

is rational on the interval [1 − ε, 1).
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For any infinite history h ∈ Hω the value u
(k)
λ1,...,λm

(h) can be seen as a function
of discount factors λ1, . . . , λm. It turns out that

Lemma 8. For each m ∈ {1, . . . , k} and for each h ∈ Hω,

lim
λm↑1

u
(k)
λ1,...,λm

(h) = u
(k)
λ1,...,λm−1

(h) . (14)

The proof Lemma 8 can be found in Appendix A.

Proof of Proposition 5. Since the payoff mappings u
(k)
λ1,...,λi+1

are bounded and
Borel-measurable, Lebesgue’s dominated convergence theorem and Lemma 8 imply
that for all strategies σ and τ for players 1 and 2

lim
λi+1↑1

E
s
σ,τ (u

(k)
λ1,...,λi+1

) = E
s
σ,τ ( lim

λi+1↑1
u

(k)
λ1,...,λi+1

) = E
s
σ,τ (u

(k)
λ1,...,λi

) . (15)

Iterating we get

lim
λm+1↑1

. . . lim
λk↑1

E
s
σ,τ (u

(k)
λ1,...,λk

) = E
s
σ,τ ( lim

λm+1↑1
. . . lim

λk↑1
u

(k)
λ1,...,λk

) = E
s
σ,τ (u

(k)
λ1,...,λm

) .

(16)
Suppose now that strategies σ and τ are pure stationary.Then, by Lemma 6, the

mapping

[0, 1)k ∋ (λ1, . . . , λk) 7→ E
s
σ,τ (u

(k)
λ1,...,λk

)

is rational and bounded. Lemma 7 applied to the left hand side of (16) allows us to
deduce that, for fixed λ1, . . . , λm−1, the mapping

(0, 1) ∋ λm 7→ E
s
σ,τ (u

(k)
λ1,...,λm−1,λm

) (17)

is a rational mapping (of λm) for λm sufficiently close to 1.
For pure stationary strategies σ and σ♯ for player 1 and τ , τ ♯ for player 2 and

fixed discount factors λ1, . . . , λm−1 we consider the mapping

[0, 1) ∋ λm 7→ Φσ♯,τ♯,σ,τ (λm) := E
s
σ♯,τ♯(u

(k)
λ1,...,λm−1,λm

) − E
s
σ,τ (u

(k)
λ1,...,λm−1,λm

) .

As a difference of rational mappings, all mappings Φσ♯,τ♯,σ,τ are rational for λm

sufficiently close to 1. Since rational mappings are continuous and have finitely many
zeros, for each Φσ♯,τ♯,σ,τ we can find ǫ > 0 such that Φσ♯,τ♯,σ,τ does not change the
sign for 1 − ǫ < λm < 1, i.e.

∀λm ∈ (1 − ǫ, 1),

Φσ♯,τ♯,σ,τ (λm) ≥ 0, or Φσ♯,τ♯,σ,τ (λm) = 0, or Φσ♯,τ♯,σ,τ (λm) ≤ 0 . (18)

Moreover, since there is only a finite number of pure stationary strategies, we can
choose in (18) the same ǫ for all mappings Φσ♯,τ♯,σ,τ , where σ, σ♯ range over pure
stationary strategies of player 1 while τ, τ ♯ range over pure stationary strategies of
player 2.

9



Suppose that σ♯, τ ♯ are optimal pure stationary strategies in the game (A, u
(k)
λ1,...,λm−1,λm

)

for some λm ∈ (1 − ǫ, 1). This means that for all strategies σ, τ for both players

E
s
σ,τ♯(u

(k)
λ1,...,λm−1,λm

) ≤ E
s
σ♯,τ♯(u

(k)
λ1,...,λm−1,λm

) ≤ E
s
σ♯,τ (u

(k)
λ1,...,λm−1,λm

) . (19)

For pure stationary strategies σ, τ , Eq. (19) is equivalent with Φσ♯,τ♯,σ,τ♯(λm) ≥ 0
and Φσ♯,τ♯,σ♯,τ (λm) ≤ 0. However, if these two inequalities are satisfied for some λm

in (1−ǫ, 1) then they are satisfied for all such λm, i.e. (19) holds for all λm in (1−ǫ, 1)
for all all pure stationary strategies σ, τ . (Thus, intuitively, we have proved that σ♯

and τ ♯ are optimal for all λm in (1− ǫ, 1) but only if we restrict ourselves to the class
of pure stationary strategies.)

But we have assumed that for each λm the game (A, u
(k)
λ1,...,λm−1,λm

) has optimal

pure stationary strategies (now we take into account all strategies), and under this
assumption it is straightforward to prove that if (19) holds for all pure stationary
strategies σ, τ then it holds for all strategies σ, τ , i.e. σ♯ and τ ♯ are optimal in the
class of all strategies and for all λm ∈ (1−ǫ, 1). In this way we have proved conditions
(i) and (ii) of Proposition 5.

Applying the limit λm ↑ 1 to (19) and taking into account (15) we get

E
s
σ,τ♯(u

(k)
λ1,...,λm−1−1,λm−1

) ≤ E
s
σ♯,τ♯(u

(k)
λ1,...,λm−1−1,λm−1

) ≤ E
s
σ♯,τ (u

(k)
λ1,...,λm−1e−1,λm−1e

) ,

which proves condition (iii) of the thesis. It is obvious that this implies also (iv).
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A Appendix

This appendix is devoted to the proof of Lemma 8.

Lemma 9. Let (ai) be a sequence of real numbers such that limi→∞ ai = 0. Let

f(λ) = (1 − λ)

∞
∑

i=0

λiai, λ ∈ [0, 1)

Then limλ↑1 f(λ) = 0.

Proof. Take any ǫ > 0. Since ai tend to 0 there exists k such that |ai| < ǫ/2 for all
i > k. Thus

|f(λ)| ≤ (1 − λ)

k
∑

i=0

λi|ai| + (1 − λ)

∞
∑

i=k+1

λi(ǫ/2) = (1 − λ)A + ǫ/2 ,

where A = max{ai | 0 ≤ i ≤ k}. For λ sufficiently close to 1, (1 − λ)A < ǫ/2. Thus
|f(λ)| < ǫ for λ close to 1 and since ǫ can be chosen arbitrarily small we get the
thesis.

Let us recall Lemma 8:

Lemma. For each m ∈ {1, . . . , k} and for each h ∈ Hω,

lim
λm↑1

u
(k)
λ1,...,λm

(h) = u
(k)
λ1,...,λm−1

(h) . (20)
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Proof. Let u
(k)
λ1,...,λm

= udisc
λ1,...,λm

+ ulim
λ1,...,λm

be the decomposition of u
(k)
λ1,...,λm

onto
the discount and limit parts. Let λ : {1, . . . , k} → [0, 1], λ⋆ : {1, . . . , k} → [0, 1], be
discount factor mappings such that for each priority i ∈ {1, . . . , k},

λ(i) =

{

λi if i ≤ m,

1 if i > m,

λ⋆(i) = λ(i) for i 6= m and λ⋆(i) = 1 for i = m. As usually, λi = λ ◦ ϕi and
λ⋆

i = λ⋆ ◦ ϕi are the corresponding stochastic processes.
We examine three cases:
Case 1: m < lim infi ϕi(h).

In this case, all priorities appearing infinitely often in the sequence ϕi(h), i = 0, 1, . . .
have the corresponding discount factors equal to 1. Thus T (h) = min{j | λl(h) =
1 for all l ≥ j} is finite. Then, cf. (11),

udisc
λ1,...,λm

(h) =
∑

0≤l<T (h)

λ0(h) · · ·λl−1(h)(1 − λl(h))rl(h) −−−→
λm↑1

∑

0≤l<T (h)

λ⋆
0(h) · · ·λ⋆

l−1(h)(1 − λ⋆
l (h))rl(h) = udisc

λ1,...,λm−1
(h) , (21)

since udisc
λ1,...,λm

(h) is just a polynomial of variables λ1, . . . , λm.

Similarly,
∏∞

l=0 λl(h) =
∏T (h)

0≤l=0 λl(h) tends to
∏T (h)

0≤l=0 λ⋆
l (h) with λm ↑ 1, imply-

ing
lim

λm↑1
ulim

λ1,...,λm
(h) = ulim

λ1,...,λm−1
(h) .

This and (21) yield (20).
Case 2: m = lim infi ϕi(h).

Since for infinitely many i, λi(h) = λm < 1, we have
∏∞

i=0 λi(h) = 0, and then
ulim

λ1,...,λm
(h) = 0.

Let
T0(h) := max

j
{ϕj(h) < m}

be the last moment when a priority strictly smaller than m appears in the sequence
ϕi(h), i ∈ N, of visited priorities. Notice that T0(h) < ∞ since the priorities appearing
infinitely often in ϕi(h), i ∈ N, are greater or equal m. We have

∑

0≤l≤T0(h)

λ0(h) · · ·λl−1(h)(1 − λl(h))rl(h) −−−→
λm↑1

∑

0≤l≤T0(h)

λ⋆
0(h) · · ·λ⋆

l−1(h)(1 − λ⋆
l (h))rl(h) =

∞
∑

l=0

λ⋆
0(h) · · ·λ⋆

l−1(h)(1 − λ⋆
l (h))rl(h) = udisc

λ1,...,λm−1
(h) , (22)

because ϕl(h) ≥ m for l > T0(h), implying λ⋆
i (h) = 1 for all l > T0(h). We define by

induction:

Ti+1(h) = min{j | j > Ti(h) and ϕj(h) = m}, i = 1, 2, . . . .

12



Intuitively, starting from the moment T0(h) we count the moments when we visit
priority m, and then, for i ≥ 1, Ti(h) gives the moment of the i-th such visit. We
have

∞
∑

l=T0(h)+1

λ0(h) · · ·λl−1(h)(1 − λl(h))rl(h) =

λ0(h) · · ·λT0(h) ·

∞
∑

l=T0(h)+1

λT0(h)+1(h) . . . λl−1(h)(1 − λl(h))rl(h) =

(

T0(h)
∏

j=0

λj(h))·[(1−λT1(h))rT1(h)+λT1(h)(1−λT2(h))rT2(h)+λT1(h)λT2(h)(1−λT3(h))rT3(h)+. . .]

(23)

where the last equality follows from the fact that, for each l > T0(h), if l 6∈ {T1(h), Th(h), . . .}
then the priority ϕl(h) is strictly greater than m and the corresponding discount fac-
tor λl(h) is equal to 1. On the other hand, λTl(h) = λm and rTl(h) = r(m) for all
l = 1, 2, . . .. Thus (23) can be written as

(

T0(h)
∏

j=0

λj(h)) ·

∞
∑

l=0

(λm)l(1 − λm)r(m) = (

T0(h)
∏

j=0

λj(h)) · r(m) −−−→
λm↑1

(

T0(h)
∏

j=0

λ⋆
j (h))r(m) = (

∞
∏

j=0

λ⋆
j (h))r(lim inf

i
ϕi(h)) = ulim

λ1,...,λm−1
(h) .

The limit above and (22) show that

lim
λm↑1

udisc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h) + ulim
λ1,...,λm−1

(h) .

Case 3: m > lim infi ϕi(h).
As in the preceding case ulim

λ1,...,λm
(h) = 0. Since m−1 ≥ lim infi ϕi(h) also ulim

λ1,...,λm−1
(h) =

0. Thus it suffices to show that

lim
λm↑1

udisc
λ1,...,λm

(h) = udisc
λ1,...,λm−1

(h) . (24)

For a subset Z of N let us define

fZ(λ1, . . . , λm) =
∑

i∈Z

(1 − λi(h))λ0(h) · · ·λi−1(h)ri(h)

and consider fX(λ1, . . . , λm) and fY (λ1, . . . , λm), where

X = {i | ϕi(h) = m} and Y = N \ X . (25)

We show that
lim

λm↑1
fX(λ1, . . . , λm) = 0 . (26)
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This is obvious if X is finite since λi(h) = λm for all i ∈ X and then fX(λ1, . . . , λm) =
(1 − λm)r(m)

∑

i∈X λ0(h) . . . λi−1(h) −−−→
λm↑1

0.

Suppose that X is infinite. Define a process Ti: T0(h) = −1, Ti+1(h) = min{j |
j > Ti(h) and ϕj(h) = m}. Thus Ti(h), i = 1, 2, . . ., gives the time of the i-th visit
to a state with priority m. Set p(h) = lim infi ϕi(h) and define another process2:

Wi(h) =

Ti(h)−1
∑

j=0

1{ϕj(h)=p(h)} .

Thus Wi(h) gives the number states with priority p(h) that were visited prior to
the moment Ti(h). Notice that, for all i ≥ 1, λ0(h) . . . λTi(h)−1 contains i − 1
factors λm and Wi(h) factors λp(h) (and possibly other discount factors) whence

λ0(h) . . . λTi(h)−1 ≤ (λm)i−1(λp(h))
Wi(h) implying

fX(λ1, . . . , λm) = (1 − λm)r(m)

∞
∑

i=0

λ0(h) . . . λTi(h)−1(h) ≤

(1 − λm)r(m)

∞
∑

i=0

(λp(h))
Wi+1(h)(λm)i−1

Now notice that limi→∞ Wi(h) = ∞ since p(h) is visited infinitely often in h. Since
p(h) < m, we have λp(h) < 1 and limi→∞(λp(h))

Wi+1(h) = 0. Thus Lemma 9 applies
and we deduce that (26) holds.

Now let us examine fY (λ1, . . . , λm). Note that

fY (λ1, . . . , λm−1, 1) =
∑

j∈Y

λ⋆
0(h) · · ·λ⋆

j−1(h)(1 − λ⋆
j (h))rj(h) =

∞
∑

j=0

λ⋆
0(h) · · ·λ⋆

j−1(h)(1 − λ⋆
j (h))rj(h) = udisc

λ1,...,λm−1
(h) ,

where the second equality follows from the fact that λ⋆
j (h) = 1 for j ∈ X . Then

lim
λm↑1

fY (λ1, . . . , λm) = fY (λ1, . . . , λm−1, 1)

follows directly from the well-know Abel’s theorem for power series3. This fact and
(26) yield (24).

B Appendix

This section is devoted to the proof of Lemma 7.

2We use the usual notation, 1A is the indicator function of an event A, 1A(h) = 1 if Hω ∋ h ∈ A

and 1A(h) = 0 otherwise.
3Abel’s theorem states that for any convergent series

P∞
i=0

ai of real or complex numbers
limz↑1

P∞
i=0

aiz
i =

P∞
i=0

ai.
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For a polynomial f(x) =
∑n

i=0 aix
i we define the order of f

ord(f) = min{i | ai 6= 0} . (27)

Since min of the empty set is ∞ the order of the zero polynomial is ∞.
The proof of the following elementary observation is left to the reader:

Lemma 10. Let f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 bix

i be non-zero polynomials

with real coefficients such that the rational function h(x) = f(x)
g(x) is bounded on the

interval (0, 1) (in particular g 6= 0). Then

(1) ord(g) ≤ ord(f) and

(2)

lim
x↓0

h(x) =

{

0 if ord(g) < ord(f),
ak

bk
if ord(f) = ord(g) = k.

Proof. Let f(x) =
∑k

i=m aix
i, g(x) =

∑n
i=p bix

i, where k = ord(f) and p = ord(g).

Then f(x)
g(x) = xm−p

Pk
i=m aix

i−m

P

n
i=p bixi−p tends, with x ↓ 0, to (A) 0 whenever m > p, (B) am

bp

whenever m = p, (C) ∞ or −∞, depending on the sign of am

bp
, whenever m < k.

Moreover, in the last case f(x)
g(x) is not bounded in the neighborhood of 0.

For two vectors (i1, . . . , in), (j1, . . . , jn) ∈ N
n of non-negative integers we write

(i1, . . . , in) ≺ (j1, . . . , jn) if (i1, . . . , in) 6= (j1, . . . , jn) and ik < jk, where k = max{1 ≤
l ≤ n | il 6= jl}. Note that ≺ is a (strict) total order relation over N

n. The non-strict
version of ≺ will be denoted �.

Let

f(x1, . . . , xn) =

k1
∑

i1=0

. . .

kn
∑

in=0

ai1...in
xi1

1 . . . xin
n (28)

be a non-zero multivariate polynomial with real coefficients. We extend the order
definition (27) to such polynomials by defining ord≺(f) ∈ N

n to be the vector
(i1, . . . , in) such that ai1...in

6= 0 and (i1, . . . , in) � (j1, . . . , jn) for all (j1, . . . , jn)
with aj1...jn

6= 0. Moreover, we shall write aord≺(f) to denote the coefficient ai1...in
,

where (i1, . . . , in) = ord≺(f).
As usually, the degree of a monomial xi1

1 · · ·xin
n is defined as deg(xi1

1 · · ·xin
n ) =

i1 + · · · + in while the degree deg(f) of a polynomial f(x1, . . . , xn) of (28) is the
maximum of the degrees over all monomials with non-zero coefficients ai1...in

.

Lemma 11. Let

f(x1, . . . , xn) =

k1
∑

i1=0

. . .

kn
∑

in=0

ai1...in
xi1

1 . . . xin
n (29)

and

g(x1, . . . , xn) =

l1
∑

i1=0

. . .

ln
∑

in=0

bi1...in
xi1

1 . . . xin
n (30)

be non-zero multivariate polynomials such that the rational function h(x1, . . . , xn) =
f(x1,...,xn)
g(x1,...,xn) is bounded on (0, 1)n. Then
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(C1) ord≺(g) � ord≺(f),

(C2)

lim
x1↓0

. . . lim
xn↓0

h(x1, . . . , xn) =

{

0 if ord≺(g) ≺ ord≺(f),
ai1...in

bi1...in
if ord≺(g) = ord≺(f) = (i1, . . . , in),

(C3) there exists ǫ > 0 such that the mapping

x1 7→ h1(x1) := lim
x2↓0

. . . lim
xn↓0

h(x1, x2, . . . , xn)

is rational on the interval (0, ǫ).

Proof. For an integer p we define a morphism

ηp : R[x1, . . . , xn] −→ R[x]

from the ring of n-variable polynomials into the ring of one-variable polynomials by
setting ηp(a) = a for a ∈ R and ηp(xi) = xpi−1

. Thus for a monomial xi1
1 . . . xin

n

we have ηp(x
i1
1 . . . xin

n ) = xi1+i2∗p+i3∗p2+···+in∗pn−1

and the image of a polynomial

f(x1, . . . , xn) of the form (29) is a one-variable polynomial ηp(f)(x) =
∑k1

i1=0 . . .
∑kn

in=0 ai1...in
ηp(x

i1
1 . . . xin

n ).

Now note that for any two monomials xi1
1 . . . xin

n and xj1
1 . . . xjn

n and each p such
that i1+· · ·+in ≤ p and j1+· · ·+jn ≤ p we have (i1, . . . , in) ≺ (j1, . . . , jn) if and only
if deg(ηp(x

i1
1 . . . xin

n )) = i1+ · · ·+ in∗pn−1 < j1 + · · ·+jn∗pn−1 = deg(ηp(x
j1
1 . . . xjn

n )).
Therefore, for f, g as in (29) and (30), taking p = max{deg(f), deg(g)} + 1, we

have ord≺(f) ≺ ord≺(g) iff ord(ηp(f)) < ord(ηp(g)).

Finally note that if f
g

is bounded on (0, 1)n then also the rational one-variable

function
ηp(f)
ηp(g) is bounded on (0, 1).

The last two remarks and Lemma 10 imply that condition (C1) of Lemma 11
holds.

We shall now prove conditions (C2) and (C3) by induction on the number n of
variables. If n = 1 then (C2) is given by Lemma 10 while (C3) is void.

Thus suppose that (C2) holds for n − 1 variables.
Defining one-variable polynomials

fi2...in
(x1) =

k1
∑

i1=0

ai1i2...in
xi1

1 , 0 ≤ i2 ≤ k2, . . . , 0 ≤ in ≤ kn (31)

and

gj2...jn
(x1) =

l1
∑

j1=0

bj1j2...jn
xj1

1 , 0 ≤ j2 ≤ l2, . . . , 0 ≤ jn ≤ ln, (32)

we can rewrite f and g as

f(x1, . . . , xn) =

k2
∑

i2=0

· · ·

kn
∑

in=0

(fi2...in
(x1)) · x

i2
2 · · ·xin

n (33)
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and

g(x1, . . . , xn) =

l2
∑

j2=0

· · ·

ln
∑

jn=0

(gj2...jn
(x1)) · x

j2
2 · · ·xjn

n . (34)

For a fixed value of a ∈ (0, 1) we consider polynomials fa and ga of n−1 variables
x2, . . . , xn defined as:

(x2, . . . , xn) 7→ fa(x2, . . . , xn) := f(a, x2, . . . , xn) ,

(x2, . . . , xn) 7→ ga(x2, . . . , xn) := g(a, x2, . . . , xn) .

(Thus here a is considered as a parameter, for different values of a we have different
polynomials fa and ga.)

Thus

fa(x2, . . . , xn) =

k2
∑

i2=0

· · ·

kn
∑

in=0

fi2...in
(a) · xi2

2 · · ·xin
n

and

ga(x2, . . . , xn) =

l2
∑

j2=0

· · ·

ln
∑

jn=0

gj2...jn
(a) · xj2

2 · · ·xjn
n .

The order ord≺(fa) of the polynomials fa(x2, . . . , xn) can vary with the value of the
parameter a, depending on whether a is a zero of polynomials fi2...in

(x1). A similar
remark is valid for ga.

Let us define

Af = {(i2, . . . , in) | fi2...in
6≡ 0} ,

Ag = {(j2, . . . , jn) | gj2...jn
6≡ 0} ,

where the notation h 6≡ 0 means that h is not a zero-polynomial. (This should not
be confused with h(x1, . . . , xn) 6= 0 which means that the value of h is different from
0 for a given argument (x1, . . . , xn).)

Now since one-variable polynomials have a finite number of zeros and since the
sets Af and Ag are finite, there exists ǫ > 0 such that all the polynomials fi2...in

,
(i2, . . . , in) ∈ Af , and gj2...jn

, (j2, . . . , jn) ∈ Ag, have no zeros on the interval (0, ǫ).
This means that if the parameter x1 = a is in the interval (0, ǫ) then ord≺(fa) and
ord≺(ga) do not depend on the value a and in fact we have

ord≺(fa) = min
≺

Af and ord≺(ga) = min
≺

Ag ,

where min≺ means that the minimum is taken the order ≺ over N
n−1.

Thus suppose that a ∈ (0, ǫ). By (C1) applied to the rational mapping (x2, . . . , xn) 7→
fa(x2,...,xn)
ga(x2,...,xn) we obtain that

(A) either ord≺(ga) ≺ ord≺(fa) and then limx2↓0 . . . limxn↓0
fa(x2,...,xn)
ga(x2,...,xn) = 0

(B) or ord≺(ga) = ord≺(fa) = (m2, . . . , mn) and then limx2↓0 . . . limxn↓0
fa(x2,...,xn)
ga(x2,...,xn) =

fm2...mn (a)

gm2...mn (a) .

17



Since limx2↓0 . . . limxn↓0
f(a,x2,...,xn)
g(a,x2,...,xn) = limx2↓0 . . . limxn↓0

fa(x2,...,xn)
ga(x2,...,xn) , in (A) as well as

in (B) we get that (C3) holds, i.e. this iterated limit is a rational function of x1 = a
whenever x1 smaller than ǫ.

Again suppose that a ∈ (0, ǫ) and ord≺(fa) = (m2, . . . , mn). Then ord≺(f) =
(m1, m2, . . . , mn), where m1 = ord(fm2...mn

(x1)). The order ord≺(g) can be obtained
i a similar way.

This implies that one of the following cases holds:

• either ord≺(ga) ≺ ord≺(fa), which implies that ord≺(g) ≺ ord≺(f) and then,
by (A),

lim
x1↓0

lim
x2↓0

. . . lim
xn↓0

f(x1, x2, . . . , xn)

g(x1, x2, . . . , xn)
= lim

x1↓0
0 = 0 ,

• or ord≺(ga) = ord≺(fa) = (m2, . . . , mn). Let p1 = ord≺(fm2...mn
) and q1 =

ord≺(gm2...mn
). Then ord≺(f) = (p1, m2, . . . , mn) and ord≺(g) = (q1, m2, . . . , mn)

and

lim
x1↓0

lim
x2↓0

. . . lim
xn↓0

f(x1, x2, . . . , xn)

g(x1, x2, . . . , xn)
=

lim
a↓0

fm2...mn
(a)

gm2...mn
(a)

=

{

0 if q1 < p1,
am1m2...mn

bm1m2...mn
if p1 = q1 = m1.

This ends the proof of (C2).

Lemma 7 follows immediately from Lemma 11 since, for a rational function h,
limxm↑1 . . . limxk↑1 h(x1, . . . , xm−1, xm, . . . , xk) = limxm↓0 . . . limxk↓0 h(x1, . . . , xm−1, 1−
xm, . . . , 1 − xk).

C Appendix

Proof of Lemma 6

Proof. For each state s set λ(s) := λi and r(s) := r(i), where i the priority of s (i.e.
λ(s) and r(s) are discount factor and reward associates with s). Let

Mλ
σ,τ [s, s′] =

{

λ(s) · p(s′|s, σ(s)) if s ∈ S1,

λ(s) · p(s′|s, τ(s)) if s ∈ S2.

be a square matrix indexed by states:and a column vector Rλ:

for s ∈ S, (Rλ)[s] = (1 − λ(s))r(s) .

Direct verification shows that the s-th entry of the vector (
∑∞

i=0(M
λ
σ,τ )i) ·Rλ is equal

to E
s
σ,τ [

∑∞
i=0(1 − λi)λ0 · · ·λi−1ri] = E

s
σ,τ [uλ] (the limit part of uλ is 0 in this case).

By a standard technique, cf. [13], it can be shown that the matrix I−Mλ
σ,τ is invertible

and

(I − Mλ
σ,τ )−1 =

∞
∑

i=0

(Mλ
σ,τ )i . (35)
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Since the entries of I − Mλ
σ,τ are polynomial, Cramer’s rule from linear algebra show

that the elements of the inverse matrix are rational, which ends the proof. The
boundedness is immediate since |

∑∞
i=0(1 − λi)λ0 · · ·λi−1ri| ≤ maxs r(s).
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