Termination is one of the basic liveness properties, and we study the
termination problem for probabilistic programs with real-valued variables.
Previous works focused on the qualitative problem that asks whether an input
program terminates with probability~1 (almost-sure termination). A powerful
approach for this qualitative problem is the notion of ranking supermartingales
with respect to a given set of invariants. The quantitative problem
(probabilistic termination) asks for bounds on the termination probability. A
fundamental and conceptual drawback of the existing approaches to address
probabilistic termination is that even though the supermartingales consider the
probabilistic behavior of the programs, the invariants are obtained completely
ignoring the probabilistic aspect.
In this work we address the probabilistic termination problem for
linear-arithmetic probabilistic programs with nondeterminism. We define the
notion of {\em stochastic invariants}, which are constraints along with a
probability bound that the constraints hold. We introduce a concept of {\em
repulsing supermartingales}. First, we show that repulsing supermartingales can
be used to obtain bounds on the probability of the stochastic invariants.
Second, we show the effectiveness of repulsing supermartingales in the
following three ways: (1)~With a combination of ranking and repulsing
supermartingales we can compute lower bounds on the probability of termination;
(2)~repulsing supermartingales provide witnesses for refutation of almost-sure
termination; and (3)~with a combination of ranking and repulsing
supermartingales we can establish persistence properties of probabilistic
programs.
We also present results on related computational problems and an experimental
evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page