5 research outputs found

    The International Surface Pressure Databank version 2

    Get PDF
    The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions

    Independent confirmation of global land warming without the use of station temperatures

    No full text
    [1] Confidence in estimates of anthropogenic climate change is limited by known issues with air temperature observations from land stations. Station siting, instrument changes, changing observing practices, urban effects, land cover, land use variations, and statistical processing have all been hypothesized as affecting the trends presented by the Intergovernmental Panel on Climate Change and others. Any artifacts in the observed decadal and centennial variations associated with these issues could have important consequences for scientific understanding and climate policy. We use a completely different approach to investigate global land warming over the 20th century. We have ignored all air temperature observations and instead inferred them from observations of barometric pressure, sea surface temperature, and sea-ice concentration using a physically based data assimilation system called the 20th Century Reanalysis. This independent data set reproduces both annual variations and centennial trends in the temperature data sets, demonstrating the robustness of previous conclusions regarding global warming. Citation: Compo, G. P., P. D
    corecore