85 research outputs found

    Fingolimod: therapeutic mechanisms and ocular adverse effects.

    Get PDF
    Fingolimod is an oral immunomodulating drug used in the management of relapsing-remitting multiple sclerosis (RRMS). We aim to review the published literature on ocular manifestations of fingolimod therapy and their possible underlying mechanisms. The therapeutic effects of fingolimod are mediated via sphingosine receptors, which are found ubiquitously in various organs, including lymphoid cells, central nervous system, cardiac myocytes, and smooth muscle cells. Fingolimod-associated macular oedema (FAME) is the most common ocular side effect but retinal haemorrhages and retinal vein occlusion can occur. The visual consequences appear to be mild and, in cases of FAME, resolution is often attained with discontinuation of therapy. However, in cases of retinal vein occlusion, discontinuation of fingolimod alone may not be sufficient and intra-vitreal therapy may be required. We also propose a pragmatic service pathway for monitoring patients on fingolimod therapy, which includes stratifying them by risk and visual acuity

    Incomplete Inhibition of Sphingosine 1-Phosphate Lyase Modulates Immune System Function yet Prevents Early Lethality and Non-Lymphoid Lesions

    Get PDF
    BACKGROUND: S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. METHODOLOGY: In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. PRINCIPAL FINDINGS: Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL(-/-)) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PL(H/-)) or two alleles (S1PL(H/H)) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL(-/-) mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. SIGNIFICANCE: These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care

    Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss

    Get PDF
    Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing

    Heterogeneous treatment effects of therapeutic-dose heparin in patients hospitalized for COVID-19

    Get PDF
    Importance Randomized clinical trials (RCTs) of therapeutic-dose heparin in patients hospitalized with COVID-19 produced conflicting results, possibly due to heterogeneity of treatment effect (HTE) across individuals. Better understanding of HTE could facilitate individualized clinical decision-making. Objective To evaluate HTE of therapeutic-dose heparin for patients hospitalized for COVID-19 and to compare approaches to assessing HTE. Design, Setting, and Participants Exploratory analysis of a multiplatform adaptive RCT of therapeutic-dose heparin vs usual care pharmacologic thromboprophylaxis in 3320 patients hospitalized for COVID-19 enrolled in North America, South America, Europe, Asia, and Australia between April 2020 and January 2021. Heterogeneity of treatment effect was assessed 3 ways: using (1) conventional subgroup analyses of baseline characteristics, (2) a multivariable outcome prediction model (risk-based approach), and (3) a multivariable causal forest model (effect-based approach). Analyses primarily used bayesian statistics, consistent with the original trial. Exposures Participants were randomized to therapeutic-dose heparin or usual care pharmacologic thromboprophylaxis. Main Outcomes and Measures Organ support–free days, assigning a value of −1 to those who died in the hospital and the number of days free of cardiovascular or respiratory organ support up to day 21 for those who survived to hospital discharge; and hospital survival. Results Baseline demographic characteristics were similar between patients randomized to therapeutic-dose heparin or usual care (median age, 60 years; 38% female; 32% known non-White race; 45% Hispanic). In the overall multiplatform RCT population, therapeutic-dose heparin was not associated with an increase in organ support–free days (median value for the posterior distribution of the OR, 1.05; 95% credible interval, 0.91-1.22). In conventional subgroup analyses, the effect of therapeutic-dose heparin on organ support–free days differed between patients requiring organ support at baseline or not (median OR, 0.85 vs 1.30; posterior probability of difference in OR, 99.8%), between females and males (median OR, 0.87 vs 1.16; posterior probability of difference in OR, 96.4%), and between patients with lower body mass index (BMI 90% for all comparisons). In risk-based analysis, patients at lowest risk of poor outcome had the highest propensity for benefit from heparin (lowest risk decile: posterior probability of OR >1, 92%) while those at highest risk were most likely to be harmed (highest risk decile: posterior probability of OR <1, 87%). In effect-based analysis, a subset of patients identified at high risk of harm (P = .05 for difference in treatment effect) tended to have high BMI and were more likely to require organ support at baseline. Conclusions and Relevance Among patients hospitalized for COVID-19, the effect of therapeutic-dose heparin was heterogeneous. In all 3 approaches to assessing HTE, heparin was more likely to be beneficial in those who were less severely ill at presentation or had lower BMI and more likely to be harmful in sicker patients and those with higher BMI. The findings illustrate the importance of considering HTE in the design and analysis of RCTs. Trial Registration ClinicalTrials.gov Identifiers: NCT02735707, NCT04505774, NCT04359277, NCT0437258

    It's Our Fault: Better Defining Earthquake Risk in Wellington

    Get PDF
    The goal of the It’s Our Fault programme is to see Wellington positioned to become a more resilient city through a comprehensive study of the likelihood of large Wellington earthquakes, the effects of these earthquakes, and their impacts on humans and the built environment. Some key results to date include better definition and constraint on: 1) faulting in Cook Strait, 2) timing and size of past ruptures on the Wellington, Wairarapa, Wairau, and Ohariu faults, 3) state of locking of the subduction interface, 4) fault interactions throughout the region, in particular rupture statistics of the Wellington-Wairarapa fault-pair, and 5) conditional probability of rupture of the Wellington Fault. Current investigations are focused on characterisation of earthquake ground shaking behaviour in Wellington City and the Hutt Valley
    corecore