563 research outputs found
Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution
The Marine Mesozoic Revolution (MMR, starting ~200 million years ago) changed the ecological structure of sea floor communities due to increased predation pressure. It was
thought to have caused the migration of less mobile invertebrates, such as stalked isocrinid crinoids, into deeper marine environments by the end of the Mesozoic. Recent studies questioned this hypothesis, suggesting the MMR was globally asynchronous. Alternatively, Cenozoic occurrences from Antarctica and South America were described as retrograde reversions to Palaeozoic type communities in cool water. Our results provide conclusive evidence that isocrinid migration from shallow to deep water did not occur at the same time all over the world. The description of a substantial new fauna from Antarctica and Australia,
from often-overlooked isolated columnals and articulated crinoids, in addition to the first compilation to our knowledge of Cenozoic Southern Hemisphere isocrinid data, demonstrates a continuous record of shallow marine isocrinids from the Cretaceous-Paleogene to the
Eocene/Oligocene boundary
The phylogenetic origin of jaws in vertebrates: developmental plasticity and heterochrony
Copyright 2010 the Cleveland Museum of Natural History. Published version
of the paper reproduced here with permission from the publisher
Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.
Dominant mutations in TPM3, encoding Ξ±-tropomyosin(slow), cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant Ξ±-tropomyosin(slow) was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant Ξ±-tropomyosin(slow) likely impacts actinβtropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant Ξ±-tropomyosin(slow) (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition
No advantage for remembering horizontal over vertical spatial locations learned from a single viewpoint
Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding roomβfor example, in the form of a memorized view
Reduced Plasmodium vivax Erythrocyte Infection in PNG Duffy-Negative Heterozygotes
BACKGROUND: Erythrocyte Duffy blood group negativity reaches fixation in African populations where Plasmodium vivax (Pv) is uncommon. While it is known that Duffy-negative individuals are highly resistant to Pv erythrocyte infection, little is known regarding Pv susceptibility among heterozygous carriers of a Duffy-negative allele (+/β). Our limited knowledge of the selective advantages or disadvantages associated with this genotype constrains our understanding of the effect that interventions against Pv may have on the health of people living in malaria-endemic regions. METHODS AND FINDINGS: We conducted cross-sectional malaria prevalence surveys in Papua New Guinea (PNG), where we have previously identified a new Duffy-negative allele among individuals living in a region endemic for all four human malaria parasite species. We evaluated infection status by conventional blood smear light microscopy and semi-quantitative PCR-based strategies. Analysis of a longitudinal cohort constructed from our surveys showed that Duffy heterozygous (+/β) individuals were protected from Pv erythrocyte infection compared to those homozygous for wild-type alleles (+/+) (log-rank tests: LM, pβ=β0.049; PCR, pβ=β0.065). Evaluation of Pv parasitemia, determined by semi-quantitative PCR-based methods, was significantly lower in Duffy +/β vs. +/+ individuals (Mann-Whitney U: pβ=β0.023). Overall, we observed no association between susceptibility to P. falciparum erythrocyte infection and Duffy genotype. CONCLUSIONS: Our findings provide the first evidence that Duffy-negative heterozygosity reduces erythrocyte susceptibility to Pv infection. As this reduction was not associated with greater susceptibility to Pf malaria, our in vivo observations provide evidence that Pv-targeted control measures can be developed safely
Responses of marine benthic microalgae to elevated CO<inf>2</inf>
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. Β© 2011 Springer-Verlag
Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression
Mutations in the skeletal muscle Ξ±-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle Ξ±-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were βΌ30% less active on voluntary running wheels than WT mice. The Ξ±-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations
Is consuming yoghurt associated with weight management outcomes? Results from a systematic review.
BACKGROUND: Yoghurt is part of the diet of many people worldwide and is commonly recognised as a 'health food'. Epidemiological studies suggest that yoghurt may be useful as part of weight management programs. In the absence of comprehensive systematic reviews, this systematic review investigated the effect of yoghurt consumption by apparently healthy adults on weight-related outcomes. METHODS: An extensive literature search was undertaken, as part of a wider scoping review, to identify yoghurt studies. A total of 13β631 records were assessed for their relevance to weight-related outcomes. RESULTS: Twenty-two publications were eligible according to the review protocol. Cohort studies (n=6) and cross-sectional studies (n=7) all showed a correlation between yoghurt and lower or improved body weight/composition. Six randomised controlled trials (RCTs) and one controlled trial had various limitations, including small size and short duration. One RCT showed significant effects of yoghurt on weight loss, but was confounded by differences in calcium intake. One trial showed nonsignificant weight gain and the remaining five trials showed nonsignificant weight losses that were greater in yoghurt consumers. CONCLUSIONS: Yoghurt consumption is associated with lower body mass index, lower body weight/weight gain, smaller waist circumference and lower body fat in epidemiological studies. RCTs suggest weight reduction effects, but do not permit determination of a cause-effect relationship. Well-controlled, adequately powered trials in research and community settings appear likely to identify a modest but beneficial effect of yoghurt consumption for prevention of weight gain and management of obesity. The ready availability of yoghurt (a nutrient-dense food) and its ease of introduction to most diets suggests that educating the public to eat yoghurt as part of a balanced and healthy diet may potentially contribute to improved public health. Future carefully designed RCTs could provide proof of principle and large community-based studies could determine the practical impact of yoghurt on body weight/composition
- β¦