70 research outputs found

    The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

    No full text
    As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.We acknowledge funding support from the National Health and Medical Research Council (Grant APP605524, 490037 and 1047082), the Australian Research Council (Grant DP12010061), the National Collaborative Research Infrastructure Strategy of Australia and the Education investment fund from the Department of Innovation, Industry, Science and Research. PML is a recipient of an Australian Postgraduate award

    A flow cytometric assay to quantify invasion of red blood cells by rodent Plasmodium parasites in vivo

    No full text
    BACKGROUND Malaria treatments are becoming less effective due to the rapid spread of drug resistant parasites. Increased understanding of the host/parasite interaction is crucial in order to develop treatments that will be less prone to resistance. Parasite invasion of the red blood cell (RBC) is a critical aspect of the parasite life cycle and is, therefore, a promising target for the development of malaria treatments. Assays for analysing parasite invasion in vitro have been developed, but no equivalent assays exist for in vivo studies. This article describes a novel flow cytometric in vivo parasite invasion assay. METHODS Experiments were conducted with mice infected with erythrocytic stages of Plasmodium chabaudi adami strain DS. Exogenously labelled blood cells were transfused into infected mice at schizogony, and collected blood samples stained and analysed using flow cytometry to specifically detect and measure proportions of labelled RBC containing newly invaded parasites. A combination of antibodies (CD45 and CD71) and fluorescent dyes, Hoechst (DNA) and JC-1 (mitochondrial membrane potential), were used to differentiate parasitized RBCs from uninfected cells, RBCs containing Howell-Jolly bodies, leukocytes and RBC progenitors. Blood cells were treated ex vivo with proteases to examine the effects on in vivo parasite invasion. RESULTS The staining and flow cytometry analysis method was accurate in determining the parasitaemia down to 0.013% with the limit of detection at 0.007%. Transfused labelled blood supported normal rates of parasite invasion. Protease-treated red cells resulted in 35% decrease in the rate of parasite invasion within 30 minutes of introduction into the bloodstream of infected mice. CONCLUSIONS The invasion assay presented here is a versatile method for the study of in vivo red cell invasion efficiency of Plasmodium parasites in mice, and allows direct comparison of invasion in red cells derived from two different populations. The method also serves as an accurate alternative method of estimating blood parasitaemia.We acknowledge funding support from the National Health and Medical Research Council (grant APP605524, 490037 and 1047082), the Australian Research Council (grant DP12010061), the National Collaborative Research Infrastructure Strategy of Australia and the Education investment fund from the Department of Innovation, Industry, Science and Research. PML is a recipient of an Australian Postgraduate award

    Erythrocyte β spectrin can be genetically targeted to protect mice from malaria

    Get PDF
    The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea–induced mouse lines, SptbMRI26194 and SptbMRI53426, containing single-point mutations in the erythrocyte membrane skeleton gene, b spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of ninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and b spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of b spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.This work was supported by the National Health and Medical Research Council (grants APP605524 , 4 90037 and 104 7082), the Australian Research Council (grants DP12010061 and FL150100106), the National Collaborative Research Infrastructure Strategy of Australia and the education investment fund from the Department of Innovation, Industry, Science and Research via the Australian Phenomics Network, and the Japan Society for the Promotion of Science Fellowship Program (grant S16706)

    Analysis of the F2LR3 (PAR4) single nucleotide polymorphism (rs773902) in an Indigenous Australian population

    Get PDF
    The F2RL3 gene encoding protease activated receptor 4 (PAR4) contains a single nucleotide variant, rs773902, that is functional. The resulting PAR4 variants, Thr120, and Ala120, are known to differently affect platelet reactivity to thrombin. Significant population differences in the frequency of the allele indicate it may be an important determinant in the ethnic differences that exist in thrombosis and hemostasis, and for patient outcomes to PAR antagonist anti-platelet therapies. Here we determined the frequency of rs773902 in an Indigenous Australian group comprising 467 individuals from the Tiwi Islands. These people experience high rates of renal disease that may be related to platelet and PAR4 function and are potential recipients of PAR-antagonist treatments. The rs773902 minor allele frequency (Thr120) in the Tiwi Islanders was 0.32, which is similar to European and Asian groups and substantially lower than Melanesians and some African groups. Logistic regression and allele distortion testing revealed no significant associations between the variant and several markers of renal function, as well as blood glucose and blood pressure. These findings suggest that rs773902 is not an important determinant for renal disease in this Indigenous Australian group. However, the relationships between rs773902 genotype and platelet and drug responsiveness in the Tiwi, and the allele frequency in other Indigenous Australian groups should be evaluated

    Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips

    Get PDF
    Background: Illumina's Infinium SNP BeadChips are extensively used in both small and large-scale genetic studies. A fundamental step in any analysis is the processing of raw allele A and allele B intensities from each SNP into genotype calls (AA, AB, BB). Various algorithms which make use of different statistical models are available for this task. We compare four methods (GenCall, Illuminus, GenoSNP and CRLMM) on data where the true genotypes are known in advance and data from a recently published genome-wide association study.Results: In general, differences in accuracy are relatively small between the methods evaluated, although CRLMM and GenoSNP were found to consistently outperform GenCall. The performance of Illuminus is heavily dependent on sample size, with lower no call rates and improved accuracy as the number of samples available increases. For X chromosome SNPs, methods with sex-dependent models (Illuminus, CRLMM) perform better than methods which ignore gender information (GenCall, GenoSNP). We observe that CRLMM and GenoSNP are more accurate at calling SNPs with low minor allele frequency than GenCall or Illuminus. The sample quality metrics from each of the four methods were found to have a high level of agreement at flagging samples with unusual signal characteristics.Conclusions: CRLMM, GenoSNP and GenCall can be applied with confidence in studies of any size, as their performance was shown to be invariant to the number of samples available. Illuminus on the other hand requires a larger number of samples to achieve comparable levels of accuracy and its use in smaller studies (50 or fewer individuals) is not recommended

    KCC1 Activation protects Mice from the Development of Experimental Cerebral Malaria

    Get PDF
    Plasmodium falciparum malaria causes half a million deaths per year, with up to 9% of this mortality caused by cerebral malaria (CM). One of the major processes contributing to the development of CM is an excess of host inflammatory cytokines. Recently K+ signaling has emerged as an important mediator of the inflammatory response to infection; we therefore investigated whether mice carrying an ENU induced activation of the electroneutral K+ channel KCC1 had an altered response to Plasmodium berghei. Here we show that KCC1(M935K/M935K )mice are protected from the development of experimental cerebral malaria, and that this protection is associated with an increased CD4+ and TNFa response. This is the first description of a K+ channel affecting the development of experimental cerebral malaria.We would like to acknowledge Shelley Lampkin and Australian Phenomics Facility (APF) for the maintenance of the mouse colonies. Tis study was funded by the National Health and Medical Research Council of Australia (Program Grant 490037, and Project Grants 605524 and APP1047090), the National Collaborative Research Infrastructure Strategy (NCRIS), the Education Investment Fund from the Department of Education and Training, the Australian Phenomics Network, Howard Hughes Medical Institute and the Bill and Melinda Gates Foundation

    Tradisi panangat pra nikah oleh wali perempuan dalam perspektif hukum Islam: studi kasus di Desa Sadulang Kecamatan Sapeken Kabupaten Sumenep

    Get PDF
    Skripsi dengan judul “Tradisi Panangat Pra Nikah Oleh Wali Perempuan Dalam Perspektif Hukum Islam (Studi Kasus di Desa Sadulang Kecamatan Sapeken Kabupaten Sumenep. Penelitian ini bertujuan untuk menjawab pertanyaan: 1. Bagaimana tradisi panangat pra nikah oleh wali perempuan dalam di Desa Sadulang Kecamatan Sapeken Kabupaten Sumenep? 2. Bagaimana analisis hukum Islam terhadap tradisi panangat pra nikah oleh wali perempuan di Desa Sadulang Kecamatan Sapeken Kabupaten Sumenep? Jenis penelitian ini adalah dengan menggunakan metode penelitian lapangan, yaitu sebuah penelitian yang dilakukan secara langsung terhadap peristiwa data-data ada di lapangan. Teknik pengumpulan data yang penulis gunakan adalah wawancara. Setelah data terkumpul, maka penulis melakukan analisis dengan metode analisis kualitatif. Dari data-data yang telah diperoleh, pemberian panangat ini telah dilakukan oleh masyarakat Desa Sadulang sudah menjadi turun-temurun sejak dahulu sampai sekarang. Pemberian panangat di Desa Sadulang merupakan sebagai syarat wajibnya sebelum melaksanakan perkawinan. Adapun tujuannya adalah untuk menghormati atau menghargai wanita yang ingin dinikahi. Proses penentuan panangat tersebut dilakukan dengan cara musyawarah antara pihak laki-laki dengan pihak perempuan, sehingga setelah ada kata sepakat maka perkawinan akan dilangsungkan. Menurut analisis hukum Islam, adat tentang pemberian panangat ada dua yaitu: 1. Di bolehkan selama permintaan panangat tidak memberatkan. 2. Tidak boleh jika permintaan panangat mempersulit atau memberatkan, karena hal itu sangat bertentangan dengan syariat Islam. Berdasarkan hasil penelitian di atas hendaknya pemberian panangat di Desa Sadulang yang diminta oleh pihak perempuan tidak memberatkan pihak lika-laki, sehingga bagi pemuda yang ingin menyempurnakan separuh agamanya yaitu menikah bisa melangsungkannya, jangan sampai gara-gara permintaan panangat yang terlalu tinggi bisa menghalangi niat baik seseorang yang ingin menikah. Kepada para tokoh agama, tokoh masyarakat hendaknya memberikan pemahaman kepada masyarakat Desa Sadulang tentang pelaksanaan panangat yang tidak bertentangan dengan ajaran Islam, karena pada dasarnya masyarakat Desa Sadulang 100% (seratus persen) beragama Islam. Sehingga adat yang berlaku harus sesuai dengan ajaran Islam

    New Genetic Loci Associated With Chronic Kidney Disease in an Indigenous Australian Population

    Get PDF
    The common occurrence of renal disease in Australian Aboriginal populations such as Tiwi Islanders may be determined by environmental and genetic factors. To explore genetic contributions, we performed a genome-wide association study (GWAS) of urinary albumin creatinine ratio (ACR) in a sample of 249 Tiwi individuals with genotype data from a 370K Affymetrix single nucleotide polymorphism (SNP) array. A principal component analysis (PCA) of the 249 individual Tiwi cohort and samples from 11 populations included in phase III of the HapMap Project indicated that Tiwi Islanders are a relatively distinct and unique population with no close genetic relationships to the other ethnic groups. After adjusting for age and sex, the proportion of ACR variance explained by the 370K SNPs was estimated to be 37% (using the software GCTA.31; likelihood ratio = 8.06, p-value = 0.002). The GWAS identified eight SNPs that were nominally significantly associated with ACR (p < 0.0005). A replication study of these SNPs was performed in an independent cohort of 497 individuals on the eight SNPs. Four of these SNPs were significantly associated with ACR in the replication sample (p < 0.05), rs4016189 located near the CRIM1 gene (p = 0.000751), rs443816 located in the gene encoding UGT2B11 (p = 0.022), rs6461901 located near the NFE2L3 gene, and rs1535656 located in the RAB14 gene. The SNP rs4016189 was still significant after adjusting for multiple testing. A structural equation model (SEM) demonstrated that the rs4016189 SNP was not associated with other phenotypes such as estimated glomerular filtration rate (eGFR), diabetes, and blood pressure

    Platelets kill circulating parasites of all major Plasmodium species in human malaria

    Get PDF
    Platelets are understood to assist host innate immune responses against infection, although direct evidence of this function in any human disease, including malaria, is unknown. Here we characterized platelet–erythrocyte interactions by microscopy and flow cytometry in patients with malaria naturally infected with Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, or Plasmodium knowlesi. Blood samples from 376 participants were collected from malaria-endemic areas of Papua, Indonesia, and Sabah, Malaysia. Platelets were observed binding directly with and killing intraerythrocytic parasites of each of the Plasmodium species studied, particularly mature stages, and was greatest in P vivax patients. Platelets preferentially bound to the infected more than to the uninfected erythrocytes in the bloodstream. Analysis of intraerythrocytic parasites indicated the frequent occurrence of platelet-associated parasite killing, characterized by the intraerythrocytic accumulation of platelet factor-4 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling of parasite nuclei (PF4+TUNEL+ parasites). These PF4+TUNEL+ parasites were not associated with measures of systemic platelet activation. Importantly, patient platelet counts, infected erythrocyte-platelet complexes, and platelet-associated parasite killing correlated inversely with patient parasite loads. These relationships, taken together with the frequency of platelet-associated parasite killing observed among the different patients and Plasmodium species, suggest that platelets may control the growth of between 5% and 60% of circulating parasites. Platelet–erythrocyte complexes made up a major proportion of the total platelet pool in patients with malaria and may therefore contribute considerably to malarial thrombocytopenia. Parasite killing was demonstrated to be platelet factor-4-mediated in P knowlesi culture. Collectively, our results indicate that platelets directly contribute to innate control of Plasmodium infection in human malaria.This work was supported by the Australian National Health and Medical Research Council (Grants #1037304, #1045156, #490037, #605524, #1047082, #1047090, and #1066502, and Fellowships to N.M.A. [#1042072, #1135820], B.E.B. [#1088738], and M.J.G. [#1138860]), the Australian Research Council (grant #120100061), the Wellcome Trust (Fellowships to R.N.P. [#200909] and J.R.P. [#099875]), the Singapore National Medical Research Council (Award to T.W.Y. [CSA INV 15nov007]), and the Australian Department of Foreign Affairs and Trade
    • …
    corecore