23 research outputs found

    Trigonal to pentagonal bipyramidal coordination switching in a Co(II) single-ion magnet

    Get PDF
    In molecular magnetism and single-ion magnets in particular, the observation of slow relaxation of the magnetization is intimately linked to the coordination environment of the metal center. Such systems typically have blocking temperatures well below that of liquid nitrogen, and therefore detailed magnetic characterization is usually carried out at very low temperatures. Despite this, there has been little advantage taken of ultralow temperature single-crystal X-ray diffraction techniques that could provide a full understanding of the crystal structure in the same temperature regime where slow magnetic relaxation occurs. Here, we present a systematic variable temperature single crystal X-ray diffraction study of [CoII(NO3)3(H2O)(HDABCO)] (1) {DABCO = 1,4-diazabicyclo[2.2.2]octane} conducted between 295 to 4 K. A reversible and robust disorder-to-order, single-crystal to single-crystal phase transition was identified, which accompanied a switching of the coordination geometry around the central Co(II) from 5- to 7-coordinate below 140 K. The magnetic properties were investigated, revealing slow relaxation of the magnetization arising from a large easy-plane magnetic anisotropy (+D) in the Co(II) pentagonal bipyramidal environment observed at low temperatures. This study highlights the importance of conducting thorough low temperature crystallographic studies, particularly where magnetic characterization is carried out at such low temperatures

    Accurate H-atom parameters for the two polymorphs of L-histidine at 5, 105 and 295 K

    Get PDF
    The crystal structure of the monoclinic polymorph of the primary amino acid l-histidine has been determined for the first time by single-crystal neutron diffraction, while that of the orthorhombic polymorph has been reinvestigated with an untwinned crystal, improving the experimental precision and accuracy. For each polymorph, neutron diffraction data were collected at 5, 105 and 295 K. Single-crystal X-ray diffraction experiments were also performed at the same temperatures. The two polymorphs, whose crystal packing is interpreted by intermolecular interaction energies calculated using the Pixel method, show differences in the energy and geometry of the hydrogen bond formed along the c direction. Taking advantage of the X-ray diffraction data collected at 5 K, the precision and accuracy of the new Hirshfeld atom refinement method implemented in NoSpherA2 were probed choosing various settings of the functionals and basis sets, together with the use of explicit clusters of molecules and enhanced rigid-body restraints for H atoms. Equivalent atomic coordinates and anisotropic displacement parameters were compared and found to agree well with those obtained from the corresponding neutron structural models

    Pressure-and temperature induced phase transitions, piezochromism, NLC behaviour and pressure controlled Jahn–Teller switching in a Cu-based framework

    Get PDF
    In situ single-crystal diffraction and spectroscopic techniques have been used to study a previously unreported Cu-framework bis[1-(4-pyridyl)butane-1,3-dione]copper(II) (CuPyr-I). CuPyr-I was found to exhibit high-pressure and low-temperature phase transitions, piezochromism, negative linear compressibility, and a pressure induced Jahn?Teller switch, where the switching pressure was hydrostatic media dependent.The support by the Spanish Ministerio de EconomŽıa, Industria y Competitividad (PGC2018-101464-B-I00), and INNVAL 18/28 is also acknowledged

    Posterior cortical atrophy and Alzheimer’s disease : a meta-analytic review of neuropsychological and brain morphometry studies

    Get PDF
    This paper presents the first systematic review and meta-analysis of neuropsychological and brain morphometry studies comparing posterior cortical atrophy (PCA) to typical Alzheimer's disease (tAD). Literature searches were conducted for brain morphometry and neuropsychological studies including a PCA and a tAD group. Compared to healthy controls (HC), PCA patients exhibited significant decreases in temporal, occipital and parietal gray matter (GM) volumes, whereas tAD patients showed extensive left temporal atrophy. Compared to tAD patients, participants with PCA showed greater GM volume reduction in the right occipital gyrus extending to the posterior lobule. In addition, PCA patients showed less GM volume loss in the left parahippocampal gyrus and left hippocampus than tAD patients. PCA patients exhibit significantly greater impairment in Immediate Visuospatial Memory as well as Visuoperceptual and Visuospatial Abilities than patients with tAD. However, tAD patients showed greater impairment in Delayed Auditory/Verbal Memory than patients with PCA. PCA is characterized by significant atrophy of the occipital and parietal regions and severe impairments in visuospatial functioning.JA is funded by a doctoral grant from the Foundation for Science and Technology, FCT (SFRH/BD/64457/2009, co-funded by FSE/POPH). JA and AS are funded by project PIC/IC/83290/2007, which is supported by FEDER (POFC-COMPETE) and FCT. JMS is supported by a fellowship of the project SwitchBox-FP7-HEALTH-2010-grant 259772-2. These organizations had no role in the study design, data collection, analysis, interpretation, or in the decision to submit the paper for publication

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+e−e^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study

    Get PDF
    There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)

    Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity.

    Get PDF
    The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage

    The structure of a pentachromium(II) extended metal atom chain at 3 K: Cotton’s conjecture proven

    No full text
    We provide definitive experimental proof that prototypical string-like compound [Cr5(tpda)4(NCS)2] has alternating long and short Cr-Cr separations in the solid state, as conjectured by F. A. Cotton, rather than essentially equally spaced Cr atoms, as initially claimed (H2tpda = N2,N6-di(pyridin-2-yl)pyridine-2,6-diamine). Single-crystal X-ray data collected from 292 to 3 K revealed that the misinterpretation is caused by pseudo-merohedral twinning and that bond length alternation is enhanced at low temperature
    corecore