77 research outputs found

    Minigap in a long disordered SNS junction: analytical results

    Full text link
    We review and refine analytical results on the density of states in a long disordered superconductor - normal-metal - superconductor junction with transparent interfaces. Our analysis includes the behavior of the minigap near phase differences zero and PI across the junction, as well as the density of states at energies much larger than the minigap but much smaller than the superconducting gap.Comment: 4 page

    The excitation spectrum of mesoscopic proximity structures

    Full text link
    We investigate one aspect of the proximity effect, viz., the local density of states of a superconductor-normal metal sandwich. In contrast to earlier work, we allow for the presence of an arbitrary concentration of impurities in the structure. The superconductor induces a gap in the normal metal spectrum that is proportional to the inverse of the elastic mean free path l_N for rather clean systems. For a mean free path much shorter than the thickness of the normal metal, we find a gap size proportional to l_N that approaches the behavior predicted by the Usadel equation (diffusive limit). We also discuss the influence of interface and surface roughness, the consequences of a non-ideal transmittivity of the interface, and the dependence of our results on the choice of the model of impurity scattering.Comment: 7 pages, 8 figures (included), submitted to PR

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    Detailed electronic structure studies on superconducting MgB2_2 and related compounds

    Full text link
    In order to understand the unexpected superconducting behavior of MgB2_2 compound we have made electronic structure calculations for MgB2_2 and closely related systems. Our calculated Debye temperature from the elastic properties indicate that the average phonon frequency is very large in MgB2_2 compared with other superconducting intermetallics and the exceptionally high TcT_c in this material can be explained through BCS mechanism only if phonon softening occurs or the phonon modes are highly anisotropic. We identified a doubly-degenerate quasi-two dimensional key-energy band in the vicinity of EFE_{F} along Γ\Gamma-A direction of BZ which play an important role in deciding the superconducting behavior of this material. Based on this result, we have searched for similar kinds of electronic feature in a series of isoelectronic compounds such as BeB2_2, CaB2_2, SrB2_2, LiBC and MgB2_2C2_2 and found that MgB2_2C2_2 is one potential material from the superconductivity point of view. There are contradictory experimental results regarding the anisotropy in the elastic properties of MgB2_2 ranging from isotropic, moderately anisotropic to highly anisotropic. In order to settle this issue we have calculated the single crystal elastic constants for MgB2_2 by the accurate full-potential method and derived the directional dependent linear compressibility, Young's modulus, shear modulus and relevant elastic properties. We have observed large anisotropy in the elastic properties. Our calculated polarized optical dielectric tensor shows highly anisotropic behavior even though it possesses isotropic transport property. MgB2_2 possesses a mixed bonding character and this has been verified from density of states, charge density and crystal orbital Hamiltonian population analyses

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)⊗h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    The antiferromagnetic phi4 Model, I. The Mean-field Solution

    Full text link
    Certain higher dimensional operators of the lagrangian may render the vacuum inhomogeneous. A rather rich phase structure of the phi4 scalar model in four dimensions is presented by means of the mean-field approximation. One finds para- ferro- ferri- and antiferromagnetic phases and commensurate-incommensurate transitions. There are several particles described by the same quantum field in a manner similar to the species doubling of the lattice fermions. It is pointed out that chiral bosons can be introduced in the lattice regularized theory.Comment: To appear in Phys. Rev.

    CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common beta chain of the IL-3, GM-CSF and IL-5 receptors

    Get PDF
    The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU).Con Panousis, Urmi Dhagat, Kirsten M. Edwards, Veronika Rayzman, Matthew P. Hardy, Hal Braley, Gail M. Gauvreau, Timothy R. Hercus, Steven Smith, Roma Sehmi, Laura McMillan, Mara Dottore, Barbara J. McClure, Louis J. Fabri, Gino Vairo, Angel F Lopez, Michael W. Parker, Andrew D. Nash, Nicholas J. Wilson, Michael J. Wilson and Catherine M. Owczare

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio
    • …
    corecore