We investigate one aspect of the proximity effect, viz., the local density of
states of a superconductor-normal metal sandwich. In contrast to earlier work,
we allow for the presence of an arbitrary concentration of impurities in the
structure. The superconductor induces a gap in the normal metal spectrum that
is proportional to the inverse of the elastic mean free path l_N for rather
clean systems. For a mean free path much shorter than the thickness of the
normal metal, we find a gap size proportional to l_N that approaches the
behavior predicted by the Usadel equation (diffusive limit). We also discuss
the influence of interface and surface roughness, the consequences of a
non-ideal transmittivity of the interface, and the dependence of our results on
the choice of the model of impurity scattering.Comment: 7 pages, 8 figures (included), submitted to PR