92 research outputs found

    Calculation of ground states of four-dimensional +or- J Ising spin glasses

    Full text link
    Ground states of four-dimensional (d=4) EA Ising spin glasses are calculated for sizes up to 7x7x7x7 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state energy of the infinite system is extrapolated as e_0=-2.095(1). The ground-state stiffness (or domain wall) energy D is calculated. A D~L^{\Theta} behavior with \Theta=0.65(4) is found which confirms that the d=4 model has an equilibrium spin-glass-paramagnet transition for non-zero T_c.Comment: 5 pages, 3 figures, 31 references, revtex; update of reference

    Ground-state clusters of two-, three- and four-dimensional +-J Ising spin glasses

    Full text link
    A huge number of independent true ground-state configurations is calculated for two-, three- and four-dimensional +- J spin-glass models. Using the genetic cluster-exact approximation method, system sizes up to N=20^2,8^3,6^4 spins are treated. A ``ballistic-search'' algorithm is applied which allows even for large system sizes to identify clusters of ground states which are connected by chains of zero-energy flips of spins. The number of clusters n_C diverges with N going to infinity. For all dimensions considered here, an exponential increase of n_C appears to be more likely than a growth with a power of N. The number of different ground states is found to grow clearly exponentially with N. A zero-temperature entropy per spin of s_0=0.078(5)k_B (2d), s_0=0.051(3)k_B (3d) respectively s_0=0.027(5)k_B (4d) is obtained.Comment: large extensions, now 12 pages, 9 figures, 27 reference

    Lower Critical Dimension of Ising Spin Glasses

    Full text link
    Exact ground states of two-dimensional Ising spin glasses with Gaussian and bimodal (+- J) distributions of the disorder are calculated using a ``matching'' algorithm, which allows large system sizes of up to N=480^2 spins to be investigated. We study domain walls induced by two rather different types of boundary-condition changes, and, in each case, analyze the system-size dependence of an appropriately defined ``defect energy'', which we denote by DE. For Gaussian disorder, we find a power-law behavior DE ~ L^\theta, with \theta=-0.266(2) and \theta=-0.282(2) for the two types of boundary condition changes. These results are in reasonable agreement with each other, allowing for small systematic effects. They also agree well with earlier work on smaller sizes. The negative value indicates that two dimensions is below the lower critical dimension d_c. For the +-J model, we obtain a different result, namely the domain-wall energy saturates at a nonzero value for L\to \infty, so \theta = 0, indicating that the lower critical dimension for the +-J model exactly d_c=2.Comment: 4 pages, 4 figures, 1 table, revte

    No spin-glass transition in the "mobile-bond" model

    Full text link
    The recently introduced ``mobile-bond'' model for two-dimensional spin glasses is studied. The model is characterized by an annealing temperature T_q. On the basis of Monte Carlo simulations of small systems it has been claimed that this model exhibits a non-trivial spin-glass transition at finite temperature for small values of T_q. Here the model is studied by means of exact ground-state calculations of large systems up to N=256^2. The scaling of domain-wall energies is investigated as a function of the system size. For small values T_q<0.95 the system behaves like a (gauge-transformed) ferromagnet having a small fraction of frustrated plaquettes. For T_q>=0.95 the system behaves like the standard two-dimensional +-J spin-glass, i.e. it does NOT exhibit a phase transition at T>0.Comment: 4 pages, 5 figures, RevTe

    Generating droplets in two-dimensional Ising spin glasses by using matching algorithms

    Full text link
    We study the behavior of droplets for two dimensional Ising spin glasses with Gaussian interactions. We use an exact matching algorithm which enables study of systems with linear dimension L up to 240, which is larger than is possible with other approaches. But the method only allows certain classes of droplets to be generated. We study single-bond, cross and a category of fixed volume droplets as well as first excitations. By comparison with similar or equivalent droplets generated in previous works, the advantages but also the limitations of this approach are revealed. In particular we have studied the scaling behavior of the droplet energies and droplet sizes. In most cases, a crossover of the data can be observed such that for large sizes the behavior is compatible with the one-exponent scenario of the droplet theory. Only for the case of first excitations, no clear conclusion can be reached, probably because even with the matching approach the accessible system sizes are still too small.Comment: 11 pages, 16 figures, revte

    Low-energy excitations in the three-dimensional random-field Ising model

    Get PDF
    The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be studied numerically with the help of efficient ground-state algorithms. In this study, we extend these algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze several properties of these clusters. Our results support the validity of the droplet-model description for the RFIM.Comment: 10 pages, 9 figure

    Bound States and Scattering Processes in the ^4He_3 Atomic System

    Get PDF
    We present a mathematically rigorous method for solving three-atomic bound state and scattering problems. The method is well suited for applications in systems where the inter-atomic interaction is of a hard-core nature. It has been employed to obtain the ground- and excited-state energies for the Helium trimer and to calculate, for the first time, the scattering phase shifts and wave-functions for the He atom-He dimer at ultra-low energies.Comment: 9 pages, main file 21 kB, 1 eps and 4 ps figure

    The relationship between carbonic anhydrase IX (CAIX) and patient survival in breast cancer: systematic review and meta-analysis

    Get PDF
    Purpose: Hypoxia is a characteristic of many solid tumours and an adverse prognostic factor for cancer therapy. Hypoxia results in upregulation of carbonic anhydrase IX (CAIX) expression, a pH-regulating enzyme. Many human tissue studies have examined the prognostic value of CAIX expression in breast cancer but have yielded inconsistent results. Therefore, a systematic review and meta-analysis was undertaken to assess the prognostic value of CAIX expression for breast cancer patients. Methods: The electronic databases were systematically searched to identify relevant papers. The clinical outcomes included disease-free survival (DFS), recurrence-free survival (RFS) and overall survival (OS) in breast cancer patients. Review Manager version 5.4 was employed to analysis data from 23 eligible studies (containing 8390 patients). Results: High CAIX expression was associated with poorer RFS [HR = 1.42, 95% CI (1.32−1.51), p &lt; 0.00001], DFS [HR = 1.64, 95% CI (1.34−2.00), p &lt; 0.00001], and OS [HR = 1.48, 95% CI (1.22−1.80), p &lt; 0.0001]. Heterogeneity was observed across the studies. There was an effect of the CAIX antibody employed, scoring methods, and tumour localisation on CAIX expression. Conclusion: CAIX overexpression was significantly associated with poorer RFS, DFS, and OS in breast cancer patients. However, further work in high quantity tissue cohorts is required to define the optimal methodological approach

    Low Energy Excitations in Spin Glasses from Exact Ground States

    Get PDF
    We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined exactly for system sizes up to 12^3 spins using a branch and cut algorithm. The data are consistent with a picture where the surface of the excitations is not space-filling, such as the droplet or the ``TNT'' picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of the excitations scales with their size with a small exponent \theta', which is compatible with zero if we allow moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling. Finally, we analyze the performance of our branch and cut algorithm, finding that it is correlated with the existence of large-scale,low-energy excitations.Comment: 18 Revtex pages, 16 eps figures. Text significantly expanded with more discussion of the numerical data. Fig.11 adde
    corecore