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ABSTRACT

Aims. We perform a simulation using the Astrophysical Multipurpose Software Environment of the Orion Trapezium
star cluster in which the evolution of the stars and the dynamics of planetary systems are taken into account.
Methods. The initial conditions are selected from earlier simulations in which the size and mass distributions of the
observed circum-stellar disks in this cluster are satisfactorily reproduced. Four, five or size planets per star were
introduced in orbit around the 500 solar-like stars with a maximum orbital separation of 400 au.
Results. Our study focuses on the production of free-floating planets. From a total of 2522 planets in the initial conditions
of the simulation, a total of 357 become unbound. Of these, 281 leave the cluster within the crossing time-scale of the
star cluster, the others remain bound to the cluster as free-floating intra-cluster planets. Five of these free-floating
intra-cluster planets are captured at a later time by another star.
Conclusions. The two main mechanisms by which planets are lost from their host star, ejection upon a strong encounter
with another star or internal planetary scattering, drive the evaporation independently of planet mass of orbital sep-
aration at birth. The effect of small perturbations due to slow changes in the cluster potential are important for the
evolution of planetary systems. In addition, the probability for a star losing a planet is independent of the planet mass
and independent of its initial orbital separation. As a consequence, the mass-distribution of free-floating planets is
indistinguishable from the mass distribution of planets bound to their host star.

1. Introduction

In recent years several free-floating planets, i.e. planets not
orbiting a star, have been discovered by direct infrared
imaging (Pacucci et al. 2013) and as by-catch in gravita-
tional microlensing surveys (Sumi et al. 2011; Gaudi 2012;
Gould & Yee 2013). Following star formation theory plan-
ets could in principle form in isolation (Gahm et al. 2007;
Liu et al. 2013; Haworth et al. 2015), but it seems more
likely that they form according to the canonical coagula-
tion process in a disc orbiting a host star (Kant 1755). If
planets are not formed in isolation, there are three major
mechanisms by which planets can be liberated. A planet
may become unbound:

- due to dynamical interaction with another star
(Hurley & Shara 2002; Vorobyov et al. 2017; Cai et al.
2017, 2018; Zheng et al. 2015),

- through scattering interactions among the planets in a
multi-planet system (Veras & Raymond 2012; Cai et al.
2017, 2018), and

- as a result of copious mass loss in a post-AGB phase
(Veras et al. 2015; Veras 2016) or supernova explosion
of the host star (Blaauw 1961).

- As a result of the ejection of fragments when the proto-
planetary disk is perturbed (Vorobyov et al. 2017).

The relative importance of each of these and other possible
processes are hard to asses, but the three listed here are
probably most common.

⋆ e-mail: spz@strw.leidenuniv.nl

A total of 20 free-floating planet candidates have
been identified (Udalski et al. 2008; Wright et al. 2010;
Winn & Fabrycky 2015; Mroz et al. 2018). Two of them
orbit each other in the binary-planet 2MASS J11193254-
1137466 (Best et al. 2017), but all others are single. Weak
micro-lensing searches indicate that the number of free-
floating planets with masses exceeding Jupiter’s is about
one-quarter of the number of main-sequence stars in the
Milky Way Galaxy, whereas Jupiter-mass planets appear
to be twice as common as main-sequence stars (Sumi et al.
2011). Interestingly, Earth-mass free-floaters are estimated
to be only comparable in number as main-sequence stars
(Cassan et al. 2012); There appears to be some peak in the
number of free-floating planets around the mass of Jupiter.

If rogue planets are liberated upon a strong encounter
with another star in a cluster, this process is likely to take
place during its early evolution, after circum-stellar disks
have coagulated into planets and most of the primordial gas
has been lost. By this time, the stellar density is still suffi-
ciently high that strong encounters between stars are com-
mon (Portegies Zwart & Jílková 2015). Young star clusters
may, therefore, have an important contribution to the pro-
duction of free-floating planets. However, this is at odds
with the low number of free-floating planets seen in star
clusters. Only one rogue planet was found in the TW Hy-
dra association (Schneider et al. 2016) and a dozen candi-
dates in the sigma Orionis cluster (Zapatero Osorio et al.
2013), but despite active searchers, none were found in the
Pleiades cluster (Zapatero Osorio et al. 2014). These esti-
mates are in sharp contrast to the number of asteroids and
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other sōl̄ı lapidēs expected from the star formation pro-
cesses (Portegies Zwart et al. 2018b).

The majority of free-floating planets appear as part of
the field population, but this may be a selection effect of
the methods used to find them (Winn & Fabrycky 2015).
To some degree, however, their relatively high abundance
in the field does not come as a surprise. If every star that
turns into a white dwarf liberates its planets (and other de-
bris), the number of isolated free-floaters should exceed the
number of white dwarfs at least the average number of plan-
ets per star. Many of these stars will then already be part
of the field population once they turn into white dwarfs,
giving a natural reduction of free-floating planets in clus-
ters compared to the field population. However, this would
mean that dynamical interactions and internal planetary
instabilities have a minor contribution to the formation of
free-floating planets.

In order to investigate the consequences of stellar evolu-
tion and dynamical interactions on the production of free-
floating planets, we perform a series of calculations in which
we take the relevant processes into account. The main ques-
tion we address is to what degree the dynamics of a star
cluster contribute to the formation and variety of free-
floating planets, and what is the relative importance of the
various channels for producing them.

Planetary systems in our simulation are born stable,
in the sense that allowing the systems to evolve in isola-
tion would not result in dynamical interactions among the
planets. This enables us to study specifically the relative
contribution of dynamical interactions on the production
of free-floating planets. The stars in our simulations that
receive a planetary system are selected such that they re-
main on the main sequence for the entire duration of the
simulation. Stellar mass loss, therefore, does not specifically
affect these planetary systems. As a result, in the absence of
dynamical interactions these planetary systems are not ex-
pected to be affected by either internal planetary dynamics
nor by stellar mass loss.

We include, in our simulations, the gravitational inter-
actions between the stars, the interactions inside the plan-
etary systems and the mass loss due to stellar evolution. In
principle, all the three main processes mentioned above are
included, although, as mentioned earlier, the effect of stel-
lar evolution is limited by the duration of our simulations.
We take all these effects into account as accurately as our
computer resources permit, which is particularly important
for the long-term dynamical processes among planets orbit-
ing a single star. The simulations are performed using the
Astrophysical Multipurpose Software Environment (AMUSE
for short Portegies Zwart et al. 2009, 2013; Pelupessy et al.
2013). We perform our calculations using a dedicated script,
which we call Nemesis, that enables us to integrate the
equations of motion of stars with planetary systems and
which includes the effects of mass loss due to stellar evolu-
tion and collisions between stars and planets. Our calcula-
tions ignore the primordial gas in the star cluster but our
initial conditions are selected to mimic the initial stellar
and planet distribution functions shortly after the primor-
dial gas was expelled and the disks turned into planetary
systems. Several example scripts of how AMUSE operates and
a more detailed description of the framework is provided in
Portegies Zwart & McMillan (2018).

In this work, we focus on the liberation processes and
their consequences in a dense star cluster with characteris-

tics comparable to the Orion Trapezium cluster. The ma-
jority of the observed field stars and rogue planets may
originate from bound clusters, loosely bound associations
and only a minority from isolated stars. Our adopted initial
conditions originate from a previous study (Portegies Zwart
2016) in which the size distribution of circum-stellar disks
in the Orion Trapezium cluster were reproduced. We con-
sidered these conditions suitable for our follow-up study
assuming that some of the surviving disks would pro-
duce a planetary system. The cluster in the study of
Portegies Zwart (2016) was born in virial equilibrium with
a fractal density distribution with dimension F = 1.6. The
cluster initially contained 1500 stars with a virial radius
of 0.5 pc. At an age of 1 Myr the size distribution of the
disks in this cluster is indistinguishable from the observed
size distribution of 95 proplyds larger than 100 au in the
Trapezium cluster (Vicente & Alves 2005).

We adopt the earlier reconstructed initial parameters for
the Trapezium cluster and populate the stars with a surviv-
ing disk with a planetary system. The 500 stars with a disk
size of at least 10 au at the end of their simulation received
either 4, 5 or 6 planets with a mean mass of ∼ 0.3MJupiter.
The planets are assumed to have circular orbits in a ran-
domly oriented plane. The correlation between orbital sep-
aration and planet mass was selected from the oligarchic
growth model for planetary systems by Hansen & Murray
(2013); Kokubo & Ida (2002).

After the initialization, we continue the evolution of the
star cluster including its planetary systems for 10 Myr to
an age of 11 Myr. At that time about half the cluster stars
are unbound.

In the following section (§ 2) we describe the setup of
our numerical experiment, followed by a description of the
initial conditions in § 3. We report on the results in § 4,
discuss them in § 5 and eventually, in § 6, we summarize
our findings. In the appendix (§ A) the validate the adopted
Nemesismethod for integrating planetary systems in stellar
clusters.

2. Methods

Integrating planetary systems in star clusters is complicated
by the wide range in time scales, ranging from days to mil-
lions of years, and the wide range of masses, from Earth-
mass up to about 100M⊙. The first complication directly
indicates that many planetary systems have to be inte-
grated over many orbits which have to be realized without a
secular growth of the error in the energy. The wide range in
masses hinders such integrations by introducing round-off
and integration errors (Boekholt & Portegies Zwart 2015).
The effect of stellar mass loss complicates the numerical
problem. In this section, we describe the methods devel-
oped to address these issues.

We use AMUSE for all the calculations pre-
sented here, which is a component library with meth-
ods for coupling multi-scale and multi-physics numer-
ical solvers for stellar evolution, gravitational dynam-
ics, hydrodynamics and radiative transfer. In this pa-
per we incorporate stellar evolution of all the stars
in the simulation, using the SeBa parametrized stel-
lar evolution code (Portegies Zwart & Verbunt 1996;
Portegies Zwart & Yungelson 1998; Toonen et al. 2012;
Portegies Zwart & Verbunt 2012). Gravitational interac-
tions between planets are addressed using Huayno, which
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is a class of a large variety of N -body codes based on vari-
ous kick-drift-kick algorithms using the Hamiltonian split-
ting strategy of tunable order (Pelupessy et al. 2012). For
this work, we adopted the 4th and 8th order shared time-
step solvers (Makino & Aarseth 1992; Nitadori & Makino
2008). In our case, we adopt the 4th order method for in-
tegrating the equations of motion for the stars, and the
symplectic higher-order method for planetary systems.

The compute time for integrating Newtons’ equations
of motion of N stars in a cluster scale ∝ N2. In a relatively
small star cluster, like the Trapezium cluster, studied here,
the integration time step for the top-level parent particles
peaks at a fraction of the mean cluster’s crossing time scale,
whereas the planetary time step is typically of the order of
a few per cent of the orbital period around the host star. A
multi time-step approach then saves enormously in terms
of computer time (see also Aarseth 1985).

Adding planets to stars increases the number of parti-
cles in the system. A more severe performance bottleneck
is introduced by the generally tight orbits in which these
planets are introduced (years for planets compared to mil-
lions of years for the free-floating stars in the cluster). If all
the new objects would be introduced in a regular N -body
code the computation would come to a grinding halt. To
prevent this from happening, and to reduce the effect of
integration errors and round off, we developed the Nemesis
package within the AMUSE framework.

The principles that make Nemesis efficient is based on
the wide range of scales, which is used as an advantage
by separately solving systems that are well separated in
terms of temporal or spatial scales. In addition, we intro-
duce the simplification that a planet orbiting one star has
a negligible effect on the orbit of a planet around another
star in the cluster. This strict separation subsequently al-
lows us to chose different integrators for stars and planetary
systems. The latter flexibility allows us to tailor the inte-
gration method to the topology of the system. As a conse-
quence, our calculations are naturally parallelized over the
many well-separated systems. This results in an enormous
acceleration when running on multiple cores because each
of the N -body integrators can run in parallel for the global
inter-system communication time scale. At the same time,
energy is conserved per individual system and separately
for the global N -body system to machine precision. This
combination of excellent performance and energy conserva-
tion makes Nemesis an ideal tool for integrating planetary
systems in star clusters.

2.1. The Nemesis module

In Nemesis, planetary systems and stars are integrated to-
gether. The underlying assumption is that the entire cluster
can be separated into groups. We call these groups subsys-
tems or children and they can be composed of stars as well
as planets which are relatively close together with respect to
the size of the cluster. The dynamics in these subsystems is
not resolved in the global integrator which we call the par-
ent, but integrated separately. In many cases, a planetary
system is a subsystem, but children may also be composed
of several planetary systems which happen to be spatially in
close proximity. In this approach, we integrate subsystems
separately from the rest of the cluster, but the components
of the subsystems and the other cluster objects feel each
other’s forces.

2.1.1. Calculating forces

In this § we explain how the forces in the Nemesis mod-
ule are calculated. To ease the discussion, we define the
term particle. Particles represent the centre of masses of
a subsystem or of individual objects, such as single stars
or free-floating planets. Particles represent the parents in
the N -body system and are integrated together in one N -
body code. In practice, the particles are integrated with
a 4th- or 6th-order Hermite predictor-corrector method
(Makino & Aarseth 1992; Nitadori & Makino 2008).

The internal dynamics of each child (the subsystem)
is integrated with a separate N-body code. The latter can
be a different code, for example, a simple Kepler solver or
some high-order symplectic N-body solver. We call this the
local subsystem for a particular particle, or the parent’s
child. The entire simulation is then composed of as many
N-body codes as there are subsystems and one additional
code for all the particles that are not part of a subsystem
including the centre of masses of all the subsystems. The
parent system is then composed of subsystems, single stars
or planets.

The gravitational force exerted on each particle is com-
posed of three parts:

• the forces from all the other objects in the local subsys-
tem,

• the forces of all the single particles in the global system,
• the force of the stars and planets in the other subsys-

tems.

In Nemesis we ignore the forces of the individual ob-
jects (planets and stars) in the other subsystems. Instead,
we take the force from the centre of mass of the subsystem
into account. As a consequence the stars and planets in a
subsystem do feel the total force from other subsystems as
exerted from the centre of mass of that subsystem, but not
the individual forces from all the individual components
from within that subsystem. Particles in other subsystems,
therefore, do not feel the forces of individual planets orbit-
ing a star in the other subsystem. Local particles, do feel
the forces of the other planets and stars in the same system.
This procedure, outlined in figure 1, results in a slight error
in magnitude and direction of the force on any particle due
to the assumption that all objects in another subsystem ex-
ert a force from the centre-of-mass of that subsystem. So
long as a subsystem is composed of a star with some plan-
ets, this error remains small, but the error grows when a
subsystem is composed of multiple stars. We reduce this er-
ror by assuring that subsystems remain small compared to
the inter-particle distance and that they are not composed
of many stars.

2.1.2. Integrating the system

The force calculation in Nemesis is implemented
in multiple bridge operations (Fujii et al. 2007;
Portegies Zwart & McMillan 2018). These bridges inte-
grate the equations of motion of the individual components
(particles and the subsystems) via a second-order Verlet
kick-drift-kick method (see Hut et al. 1995; Jänes et al.
2014).

In the initial kick phase, we accumulate the forces be-
tween the single particles and the particles in each of the
subsystems. These forces are used to update the velocities



4

Fig. 1: The Nemesis method, (A) A particle is an individual object or a subsystem consisting of multiple individual
objects. In this study, the individual objects are either stars or planets. (B) The gravitational force on a particle is
the sum of the force from other particles [1] and the forces from the individual objects in the subsystems. (C) The
gravitational force on individual objects is the sum of the force from the particles [1] and the forces from the other
individual objects in the containing subsystem [2] but not from those individual objects in other subsystems [3]. The
forces from A.1 and B.2 are each in a self-contained system and can be calculated in an N -body code, the forces in A.2
and B.2 are connected to the self-contained systems and are evolved with a leapfrog algorithm.

of the particles and the objects in each of the subsystems
over half a bridge time step, dtbridge/2.

In the drift phase, the particles and subsystems are in-
tegrated using the forces between the particles in each indi-
vidual subsystem. Since this is an uncoupled problem, each
individual subsystem is integrated in parallel. In this phase,
we ignore the forces between the single particles and those
that are in subsystems.

In the final kick phase, we again calculate the forces
between the single particles and the particles in the subsys-
tems based on the new positions after the drift phase, and
again update the velocities.

This procedure allows us to integrate particles and sub-
systems independently. This strict separation of integrating
subsystems enables us to adopt a different N-body code for
each subsystem, although this is not a requirement. In addi-
tion, it makes the concurrent integration of each subsystem
possible, which enormously speeds-up the procedure for a
sufficiently large number of subsystems.

2.1.3. Subsystem dynamics

Subsystems may change their composition at runtime. This
can happen when a star or planet is ejected, planets or stars
collide, when two or more subsystems merge, or when a
single object enters the subsystem. To simplify this process,
we recognize two changes to a subsystem:

Merger Two subsystems are merged to one as soon as their
centre of masses approaches each other to within the
sum of their radii. Here the radius of each subsystem
is the maximum of two radii: it is (1) 5% larger than
the distance from the centre-of-mass to the outer-most
object and (2) the size that corresponds a likely en-
counter. The latter is a function of the bridge time-step
(tnemesis), the number of objects in a subsystem, the
mass of the subsystem and a dimension-less factor η:
tenc = 1.0/ηtnemesis. We adopt a value of η ≃ 0.2. Upon
the merger of two subsystems, one of the N-body inte-
grators assimilate the other subsystem, and the other
integrator is terminated. Since both integrators may be

different, we assume that the integrator with the largest
number of particle survives.

Dissolution A subsystem can dissolve into individual ob-
jects or multiple-body parts can split off to form their
own separate subsystem. The procedure to decide on
the dissolution of a subsystem follows the inverse crite-
ria as for the merger of two or more subsystems. This
procedure may lead to the starting of one or more new
integrators to take care of the various newly introduced
subsystems. Single objects (stars or planets) are incor-
porated in the global integrator when they escape from
a subsystem.

From an astronomical point of view, this procedure looks
somewhat arcane, but numerically it has many advantages
because it allows us to optimize for efficiency, performance,
and accuracy.

2.1.4. Planet and stellar collisions

Apart from the dissolution and merging of dynamical sub-
systems, we also, allow stars and planets to experience phys-
ical collisions. Collision can only occur within a subsystem.
If two stars in the parent system would collide, they would
first for a separate subsystem, within which the collision
is handled. Two stars or planets are considered to collide
as soon as their mutual distance is smaller than the sum
of their radii. A collision always results in a single object,
while conserving the mass, volume and angular momentum
in the collision. In principle, it would be relatively easy to
perform a hydrodynamics simulation upon each collision,
but that is beyond the scope of our current study. For a
more extensive discussion on such more rewarding events,
we refer to Portegies Zwart & McMillan (2018).

Isolated stars have a size according to the stellar evolu-
tion code which runs concurrently with the dynamics. The
sizes of planets are calculated by assuming a mean planet
density of 3 g/cm3. For improved efficiency, we adopt a spe-
cial treatment for collisions between planets and the central
star of a planetary system. Planets are assumed to collide
with their orbiting star as soon as they approach it to within
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1 au. This relatively large distance was adopted in order to
reduce the computational cost of integrating tight plane-
tary orbits and to minimize the errors associated with their
numerical integration. We can easily relax this assumption,
but it would result in a considerable increase in computer
time.

The new mass of a merged object is the sum of the
two individual masses, and the new position and velocity
are determined by conserving linear momentum and angu-
lar momentum. The radius of the collision product of two
planets is calculated by conserving the density. A stellar col-
lision acquires its new radius on the stellar evolution track
as described in Portegies Zwart & Verbunt (1996).

2.2. Selecting the N -body codes in Nemesis

Each subsystem is integrated with a separate N -body code.
In principle, each of these codes could be different. In prac-
tice, however, we use two different techniques to integrate
the equations of motion of the stars and planets. The choice
of code is based on the requirements for the physics.

For two-body encounters, we adopt a semi-analytic Ke-
pler solver as implemented by Pelupessy & Portegies Zwart
(2013). For a typical planetary system in which one parti-
cle is much more massive (at least more than 100 times)
than the other particles, we use Rebound (Rein & Liu
2012) with an implementation of a symplectic Wisdom-
Holman integrator (WHFAST Rein & Tamayo 2015). For
all other subsystems, we adopt the 8th-order method avail-
able in the symplectic integrator Huayno (Pelupessy et al.
2012). The centre-of-masses of the subsystems, the sin-
gle stars and the free-floating planets are integrated us-
ing the Hermite 4th-order predictor-corrector integrator
(Makino & Aarseth 1992; Nitadori & Makino 2008).

All calculations are executed on CPU because the num-
ber of particle in each N-body code is relatively small and
a graphics processing unit (GPU) would not provide many
benefits in terms of speed (Belleman et al. 2008).

2.3. Validation and verification

The performance and accuracy of the Nemesis integrator
module is controlled with two parameters: one controls the
distance for which individual objects (planets and stars)
and subsystems merge or dissolved, and the another con-
trols the time step of the bridge operator. This so-called
bridge time-step controls the numerical time-scale for the
interactions between the subsystems and the particles. Both
parameters are tuned independently but we choose to ex-
press the bridge time-step in terms of the encounter dis-
tance and the mass of the objects. This adopted scaling
leaves only the Nemesis time-step, dtNemesis, as a free pa-
rameter for integrating the entire N -body system. This time
scale depends on the topology of the N -body system, and
we tune its value by performing scaling and validation tests.
A detailed analysis of the dependency of the model on the
time-step in presented in appendix A. For our choice of
initial conditions and integrators we have found that an
interaction time-step of 100 yr gives the most satisfactory
results in terms of reproducibility, consistency, energy con-
servation and speed.

3. Initial Conditions

After developing and validating the numerical framework
we can start generating the initial realization for our star
cluster with planetary systems. We start the calculations
with a cluster of stars, some of which have a planetary sys-
tem. The initial realization is motivated by Portegies Zwart
(2016), who studied the dynamical evolution of the star
cluster with 500 to 2500 stars taken from a broken-power
law mass-function between 0.1M⊙ and 100M⊙ (Kroupa
2001). These calculations were performed with 4th order
Hermite N -body method including a heuristic description
for the size and mass evolution of circumstellar disks. At
the start of these calculations each star received a disk
with a mass of 1% of the stellar mass and with a size
of 400 au. During the N -body integration the sizes and
masses of these disks were affected by close stellar en-
counters (Jílková et al. 2016). During these simulations the
disk size distributions were compared with the proplyds
observed using HST/WFPC2 of the Trapezium cluster
(Vicente & Alves 2005). In this way Portegies Zwart (2016)
was able to constrain the initial cluster parameters. Clus-
ters for which the stars were initially distributed according
to a Plummer (1911) distribution did not satisfactorily re-
produce the observed disk-size distribution, irrespective of
the other parameters, but when the stars were initially dis-
tributed according to a fractal with a dimension F = 1.6
and in virial equilibrium (Q = 0.5) the simulations sat-
isfactorily reproduced the observed disk size distribution
in the Trapezium cluster (KS probability of ∼ 0.8) in the
age range from 0.3 Myr to 1.0 Myr. For our simulations, we
adopted the final stellar masses, positions and velocities for
one of these simulations that match the observed distribu-
tion of disk-sizes and disk-masses best. As a consequence,
our initial conditions have already evolved dynamically for
1 Myr before we start out calculation.

In Table 1 we present the initial parameters as adopted
by Portegies Zwart (2016) in the left column (indicated
by t = 0Myr). The third column gives the global cluster
parameters at an age of 1 Myr, which are the final condi-
tions for the study performed by Portegies Zwart (2016).
We adopt these parameters and in fact, the precise realiza-
tion of these calculations as initial conditions for our follow-
up calculations. The the last (4th) column we present the
global cluster parameters at the end of our simulations, at
an age of 11 Myr, which is 10 Myr after the introduction of
the planetary systems.

During the first 1 Myr of evolution, starting from a frac-
tal spatial distribution, see the leftmost panel in Fig. 2, most
of the structure in the initial cluster is lost. The cluster
seems to have expanded considerably, as is evidenced by the
zoom-out in Fig. 2, but when considering the virial radius
has in fact decreased from the initial 0.5 pc to Rvir ≃ 0.36 pc
at an age of 1 Myr. At this moment, we randomly select 500
stars for which the circumstellar disk has survived with a
radius of at least 100 au. We subsequently assign a plane-
tary system to 500 of the stars with a surviving disk. The
total mass of the planets is identical to the disk mass. The
masses and orbital separation of planets are generated using
the oligarchic growth model (Kokubo & Ida 1998) between
a distance of 10 au to 400 au from the host star.

There is no particular reason why we adopted a mini-
mum separation of 10 au, but adopting a smaller minimum
separation would have resulted in many more planets with
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Table 1. Initial cluster model, adopted by Portegies Zwart
(2016), the final conditions for the disk-size analysis in
Portegies Zwart (2016) which we adopted as initial realization
for the simulations presented here, and the final conditions.
Ntotal, the total number of stars in the simulation. Nbnd, the
bound mass of the cluster in solar masses. Rvir the virial radius
of the cluster. Q, the virial equilibrium. F , the fractal dimension
of the cluster. Nbnd, the number of bound stars. Nbnd, the num-
ber of bound stars with planets. Nbnd, the number of unbound
stars with planets. Nw/planets the number of stars with plan-
ets. Nr≥100au the number of stars with discs or planets equal or
larger than 100 au. Nr≥100au the number of stars with discs or
planets equal or larger than 10 au. nbnd, the number of planets
bound to a star. nff , the number of free-floating planets. nunbnd,
the number of planets unbound from the cluster. mbnd, the to-
tal planetary mass in Jupiter masses, bound to a star. mff , the
total planetary mass in free-floating planets. munbnd, the total
planetary mass unbound from the cluster.

Parameter t = 0Myr t = 1Myr t = 11Myr
Cluster characteristics
Ntotal 1500 1500 1482
Mbnd/M⊙ 627 618 545
Rvir/pc 0.5 0.36 0.32
Q 1.0 0.6 1.0
F 1.6 1.26 0.6
Stellar characteristics
Nbnd 1500 977 508
Nbnd,w/p 0 512 166
Nunbnd,w/p 0 0 323
Nw/planets 0 500 517
Nr≥100au 1500 78
Nr≥10au 1500 578
Planets characteristics
nbnd – 2522 2165
nff – 0 357
nunbnd – 0 282
mbnd/MJup – 3527 2915
mff/MJup – 0 502
munbnd/MJup – 0 395

a low mass in very tight orbits. This would have resulted in
an enormous increase in computing time. All planets have
initially circular orbits with inclination randomly selected
from a Gaussian distribution with a dispersion of 1◦ around
a plane. This plane here is defined as the orbital plane of
the planet closest to the star. After the planetary systems
are initialized they are rotated to a random isotropic orien-
tation. Each star acquires between 4 and 6 planets with a
mass of 0.01 to 130 Jupiter masses (see Fig. 4 and Fig. 6).
The total number of planets in the simulation was 2522.

4. Results

When starting the simulation the stars are already 1 Myr
old, and the stellar density and velocity distribution
is the result of the previous calculations reported in
Portegies Zwart (2016). We continue to evolve this cluster
including its planets for 10 Myr to an age of 11 Myr.

We perform one simulation in which all interactions
between stars and planet are taken into account using
Nemesis. Snapshots are produced every 1000 yr, but most of
the analysis aims at the final snapshot at an age of 11 Myr.

A second simulation was performed in which the planetary
systems are evolved in isolation without any interactions
from other stars. This second run is used for validation pur-
poses only. Even though not explicitly discussed, no free-
floating planets were formed in this second run, because the
initial planetary configurations are intrinsically stable.

4.1. The global evolution of the star cluster

In Fig. 2 we present a projected view of the stars and planets
of our simulated cluster at birth (left), at an age of 1 Myr
(middle) and at the end of the simulation, at an age of
11 Myr.

During the first 1 Myr the stars still have circumstellar
disks the cluster loses most of its initial fractal structure.
During this early phase, the cluster is most dynamically
active and the majority of stars experience one or more close
encounters with other stars. These encounters cause the
truncation of circumstellar disks. By the time we introduce
the planetary systems, at an age of 1 Myr, most dynamical
interactions have subsided and the cluster has expanded
by about an order of magnitude, although the cluster core
remains rather compact (see also Table 1). The reduction
in density has profound consequences for the survivability
of our planetary systems. During the subsequent 10 Myr of
evolution the outer parts of the cluster expand by another
order of magnitude, but the cluster core remains rather
small and bound.

In the overview presented in Table 1 we demonstrate
that the cluster hardly loses any mass during its evolu-
tion. Mass loss due to stellar winds is rather moderate, re-
ducing the total cluster mass from 618M⊙ to 545M⊙ in
10 Myr. The majority of this mass loss is caused by the
two most massive stars of 73M⊙ and 64M⊙. These stars
experience copious mass loss in the Wolf-Rayet phase fol-
lowed by a supernova explosion. Such evolution may en-
rich most of the disk in the cluster by r-processed elements
(Portegies Zwart et al. 2018a). The expansion of the clus-
ter by about an order of magnitude and the global mass
loss in bound stars cannot be attributed to the stellar mass
loss alone. In total, the cluster loses about two-thirds of its
stars, one third in the first Myr and another third in the
following 10 Myr. the structure of the cluster also changes
from an initial fractal dimension of F = 1.6 to F = 1.26
at 1 Myr and to F ≃ 0.6 at the end of the simulation. The
eventual cluster, at an age of 11 Myr, can be well described
with a Plummer distribution (Plummer 1911) with a char-
acteristic radius of 0.32 pc. Although, in fig. 2 the cluster
appears to expand by two orders of magnitude, the cluster
central portion remains rather confined within a parsec.

4.2. Characteristics of the surviving planetary systems

During our calculations, planetary orbits are affected in a
number of ways. We start by describing the characteristics
of the surviving planetary systems. Later, in § 4.4 and § 4.5
we discuss the planets that are lost due to collisions or
ejected from their host star.

In Fig. 3 we present the distribution in eccentricity and
semi-major axis of the planets that remain bound up to
an age of 11 Myr. About 10% (213 in total) of the planets
have experienced considerable orbital variations (∆e > 0.1
or ∆a > 10%) due to a combination of encounters with
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Fig. 2: Projected view of the simulated star cluster at t = 0Myr (initial conditions adopted by Portegies Zwart 2016)
(left panel), at t = 1Myr (middle panel and the adopted initial conditions), and at t = 11Myr (right panel, our final
conditions). Stars are red bullets, single free floating planets black triangles.

other stars and internal planetary scattering. Note here that
in the absence of stellar encounters the planetary systems
are not affected by internal scattering. Any changes in the
planetary systems in our simulation is therefore the result of
interactions with external perturbators (stellar encounters
and cluster topology). These interactions put the planets
in orbits where internal scattering causes further changes
in the orbital parameters.

Some planets acquire eccentricities close to unity, indi-
cating that they may be subject to tidal interactions, or
even collide with the host star. Although we ignore tidal ef-
fects in our calculations, collisions are taken into account. A
total of 75 (∼ 3.0% of the total) planets collided with their
parent star and 14 (∼ 0.6%) planets experienced a collision
with another planet. We discuss planetary collisions more
extensively in § 4.4.
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Fig. 3: Eccentricity as a function of the semimajor axis the
planets that survive up to an age of t = 11Myr.

In Fig. 4 we compare the distributions of the number of
planets per star in our simulation and compare the distri-
bution with the simulation in which we ignored any stel-
lar encounters. In the latter simulations, the planetary sys-

tems are not affected by dynamics and their conditions re-
main very close to the initial conditions. This indicates that
the initial configuration of our planetary systems is stable
against internal dynamical evolution. This is not a surprise
because this is how we initialized them.
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Fig. 4: Histogram for the number of systems with a certain
number of planets. The dotted curve gives the initial dis-
tribution with either 4, 5 or 6 planets per star. The final
conditions for the simulation without stellar dynamics are
identical to this initial distribution. The distribution of the
simulation in which we included the stellar encounters at
an age of 11 Myr is presented as the solid, hashed filled,
curve. Many planetary systems are reduced (in the sense of
having lost one or more planets) as a result of encounters,
but there is a dearth of systems with 3 planets.

All stars with planetary systems have either 4, 5 or
6 planets initially. In Fig. 4 we subsequently observe that
in particular systems with 5 planets tend to be reduced,
whereas only a few stars with 4 planets or 6 planets seem
to lose any. In addition, by the end of the calculations, the
number of systems with 3 planets seem to be rather small
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compared to the number of systems with 1 or 2 planets.
To further quantify the results we also present Table 2, in
which we present the number of planets for a star initially
(columns) versus the final number of planets (rows).

From Table 2 we see that the systems with 3 planets
by the end of the simulation tend to originate from systems
with initially 4 or 5 planets. But that most systems initially
with 5 planets reduce directly to 1 or no planets at all. Cu-
riously enough though, systems with initially 6 planets do
not lose as many planets, but when they do, they tend to
reduce to a single planet, whereas for systems with initially
4 planets tend to be rather agnostic about how many plan-
ets they lose. Statistically, these changes are significant but
much can be attributed to the initial conditions. According
to our initial conditions, large disks with a relatively high
mass are prone to receiving more planets than small low-
mass disks. The large disks tend to be hosted by relatively
low-mass stars, and those stars tend to avoid the cluster
centre, whereas relatively high-mass stars tend to be more
abundant in the cluster core. These differences propagate in
the distribution of planets and therefore cause an imprint
on their future scattering history.
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Fig. 5: Histogram of the number of systems with a certain
number of lost planets. Of the original 500 planetary sys-
tems the majority (386) does not lose any planets. Only 25
systems lose 1 or 2 planets and 102 systems lose 3 or more
planets.

In Fig. 5 we plot the number of planets in a planetary
system at the end of our simulations. The majority of stars
keep all their planets throughout the calculations, but if a
star loses planets, it tends to lose a larger number 3 to 5
rather than just one or two. The lost planets become free-
floating or rogue planets, which we discuss in § 4.5.

The redistribution of planets among the stars may also
be affected by the masses of the planets. To quantify this we
present in Fig. 6 the mean planet-mass as a function of their
semi-major axis. The oligarchic-growth model, used to gen-
erate the initial planetary systems, leads to more massive
planets at larger orbital separation (visible in Fig. 6). To
see if there is a mass-preference for ejecting planets we also
show, in Fig. 6, the final distribution (at an age of 11 Myr).
Although the differences between both distributions appear
small, they differences at small separation are statistically
significant.
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Fig. 6: The mean planet-mass as a function of semi-major
axis (in a moving bin of 50 planets). The initial (at 1 Myr,
in black) and the final (at 11 Myr in red) mean mass only
differ slightly. The mean mass, 1.4 MJupiter, is depicted with
a green horizontal line.

To further quantify these findings we present in Fig. 7
the difference in the cumulative distribution of planet mass
for the cluster at an age of 1 Myr with respect to 11 Myr.
The difference between the two cumulative distributions are
small and the fluctuations rather large, but in the final sys-
tems, low-mass planets are more abundant than high-mass
planets. The turnover occurs near the mean-planet mass in
our simulation which is around 1.4MJupiter (indicated with
the vertical line in Fig. 7). Based on the lack of a correlation
between planet mass and orbital separation we argue that
the majority of ejections is driven by external perturbations
(mostly with other stars) rather than by internal scattering
among the planets.
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Fig. 7: Relative difference between the cumulative dis-
tributes of the masses of the bound planets initially and
at 11 Myr. Positive values indicate an overabundance at
the end of the simulation. Initially, the mean planet-mass
is 1.398± 1.05MJup at 11 Myr the mean mass is only frac-
tionally different at 1.404± 4.191 MJup, the latter value is
indicated by the vertical green line.
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Table 2. Comparison of the distribution of planets at the beginning and at the end of the simulation. In each cell, the count of
the number systems with a certain number of planets is given. This count is given per number of planets in the original system.
The original distribution 1Myr is given in the top summation row, the final distribution at 11Myr is given in the last column.
For the final distribution of the 6 systems with 3 planets, 2 of these systems originally had 4 planets, 4 originally had 5 planets
and none originally had 6 planets. A total of 5 new planetary systems have been created during the evolution of the cluster, in
these systems originally the star had no planets. Of these 5 new planetary system, 3 systems have 1 planet and 2 have gained 2
planets.

NP

0 1 2 3 4 5 6
∑

∑
5 0 0 0 109 332 71

0 0 0 0 0 3 25 0 28
1 3 0 0 0 6 35 10 54
2 2 0 0 0 5 17 6 30
3 0 0 0 0 2 4 0 6
4 0 0 0 0 93 11 0 104
5 0 0 0 0 0 240 2 242
6 0 0 0 0 0 0 53 53

4.3. Migrating and abducted planets

Two rather extreme processes which affect the orbits of
planets are their abduction from another star, or when
a planet is scattered during a close encounter with other
planets. In both cases the resulting planet is expected to be
parked in a wide orbit with high eccentricity. However, plan-
ets that are scattered close to the host star into a parking
orbit are expected to have higher eccentricity, on average,
than planets abducted from another star (see Jílková et al.
2016).

In our simulations, only a few planets were abducted,
and a comparable number of planets was kicked out to the
outskirts of their own planetary system by internal scat-
tering. In Fig. 8 we compare the orbital separation and ec-
centricity of these systems. Although the distributions are
rather broad in semi-major axis and in eccentricity, cap-
tured planets have on average lower eccentricity and some-
what larger orbital separation compared to ejected planets.

In table 3 we list the migrated planets, and the abducted
planets are presented in Table 4. Apart from slight differ-
ences in the orbital parameters, the mass of the host star for
captured planets tends to be considerably higher than for
the migrated planets. This trend is not unexpected because
of the stronger gravitational influence of more massive stars
whereas low-mass stars are more prone to lose planets.

The abducted planets in Table 4 appear to have large
semi-major axes and a broad range in eccentricities. Such
abduction explains the observed orbital parameters of the
dwarf planet Sedna in the Solar System (see Jílková et al.
2015). Alternative to abduction, a free-floating planet
could in principle be captured by a star or planetary sys-
tem. Capturing free floating planets was also studied in
Goulinski & Ribak (2018), who argue that these systems
may not be uncommon, but that they would have a wide
range in eccentricities and typically large semi-major axes
(Perets & Kouwenhoven 2012). In our simulations no free-
floaing planets ware captured, and we do not expect this to
be a common process because 80% of the ejected planets
escape promptly from the cluster (see § 4.5).
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Fig. 8: Eccentricity as a function of the semimajor axis for
captured planets (black diamonds) and migrated planets
with semimajor axis larger than 800 au (red dots) at an age
of t = 11Myr. The mean and standard deviation for both
sets are also plotter. The mean orbital elements for the
captured planets is ac = 1539± 824 au and ec = 0.6± 0.2,
and ac = 1141± 258 au and ec = 0.8± 0.2 for the migrated
planets.

4.4. The characteristics of colliding planets

One important aspect of planets is their finite size, which
makes them prone to collisions. A total of 75 planets in our
simulations collide with another planet or with the parent
star. In our simulations, collision with the parent star is
not treated realistically in the sense that we ignored tidal
effects. We compensate for this by adopting a size of 1 au
for planetary-hosting stars. As a result, we overestimate
the number of collisions with the host star and we do not
acquire hot Jupiter planets. We, therefore, focus on the col-
lisions that occur between planets.

In Table 5 and Table 6 we list the mergers that occurred
in our simulations sorted in the moment of the collision.
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Table 3. Parameters for planetary systems in which one planet
was ejected to a larger distance (> 800 au) from its host star.
The second column identified which planet was ejected, followed
by the mass of the host, the planet mass and its eventual orbital
parameters.

System Planet M
(Msun)

m
(Mjup)

a (au) e

0 a 0.33 1.27 983.2 0.93
1 a 0.16 2.23 900.1 0.89
2 a 0.37 0.85 1107 0.39
3 b 0.37 6.05 1311 0.71
4 a 0.25 1.39 933.6 0.94
5 a 0.20 2.43 1062 0.94
6 a 0.72 6.85 1693 0.90

Table 4. A listing of systems that formed by the abduction
of a planet from another star. Each of these stars was initially
without any planets, but one or two planets were captured from
another system. In two cases (#7 and #10) two planets were
captured.

System Planet M
(Msun)

m (Mjup) a (au) e

7 a 9.16 0.28 1544 0.68
7 b 9.16 0.50 1161 0.22
8 a 6.70 14.69 3332 0.50
9 a 3.61 0.95 891.5 0.77
10 a 0.47 0.03 1100 0.66
10 b 0.47 0.12 1208 0.71
11 a 0.55 0.38 192.5 0.60

In Table 5 we show the pre-collision parameters of the two
planets that participate in the collision, whereas in Table 6
we list the orbital parameters of the merger product.

The orbital parameters for the pre-merger planets are
derived from the last snapshot before the merger occurred,
which can be up to 1000 years before the actual event.
The mean mass of the primary in a colliding planet pair
is 1.14MJup and a secondary of 0.36MJup. The result-
ing merger product is 1.5MJup. During the calculation, 34
planets collided in a total of 19 events. Several planets ex-
perienced multiple collisions, causing the planet mass to
increase quite effectively and causing it to migrate closer
towards the host star. These multiple mergers all tend to
occur in relatively short succession.

Most mergers tend to occur between neighbouring plan-
ets, but there are 7 occasions where one or more inter-
mittent planets are skipped. In particular the event at
t = 5.91Myr is interesting because in this case, the out-
ermost planet collides with the innermost planet. Although
not taken into account in our calculations, such close en-
counters among planets could lead to the capture of one
planet by the other, giving rise to a binary planet as was
observed in Kepler 1625 (Hamers & Portegies Zwart 2018).

4.5. The production of free floating planets

By the time the cluster has reached an age of 11 Myr the
total mass in bound planets was reduced from ∼ 3527Mjup

to ∼ 2915Mjup (see Table 1). Planets have been lost by
their parent star via encounters with other stars (see § 4.5)
, internal planet-scattering (∼ 60), by the mass loss of their
host stars and through collisions with the star (75, see § 4.4)
of collided with another planet (14). Once liberated, free-
floaters may remain bound to the cluster (75 planets) or
escape its gravitational potential (282, see Table 1). In to-
tal 357 planets (out of 2522) were liberated from the grav-
itational pull of their parent star. In § 4.3 we discussed the
possibility of captured planets, but this was not the fate of
any of the free-floating planets, because all captured planets
were exchanged during a close encounter and always bound
to at least one star.

In Fig. 9 we present the number of free-floating planets
as a function of time. The majority of free floaters (67%)
leave the cluster within a crossing time (∼ 1Myr) after be-
ing liberated from their host star. The other ∼ 33% remain
bound to the cluster for an extended period of time and
leave the cluster on a much longer timescale, at a typical
escape rate of ∼ 8 planets per Myr.
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Fig. 9: The number of free-floating planets (Nfp) as a func-
tion of time. The solid curve (black) gives all free planets,
the red curve gives the subset of free floaters that also es-
cape the cluster.

In Fig. 10 we present the cumulative distributions of the
velocity of bound and unbound stars and planets (for the
planets we make a distinction between free-floating plan-
ets which remain bound to the cluster and those that es-
cape). The distributions for the stars and planets at an
age of 11 Myr that are still bound to the cluster show only
slight differences (thin lines). Both velocity distributions are
statistically indistinguishable (with a KS-statistic of 0.23).
The population of unbound planets, however, tend to have
much higher velocities (of ∼ 3+5.6

−1.2 km/s) than the stars

(∼ 1+1.3
−0.6 km/s). This is not unexpected because planets

tend to be launched from the stars with their orbital speed,
which gives rise to higher mean escape velocity, whereas
most stars escape by dynamical evaporation (??). This rel-
atively high space motion of the rogue planets is also re-
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Table 5. Orbital elements of the merging planets. For each merger the time of the snapshot saved just before the merger is given.
For every planet the index of the planetary system is given with a letter denoting the position of the planet in the system (from
the innermost planet ’a’ to the outermost planet ’f’). Here we define the inclination of a planet with respect to the initial orbital
plane of the closest planet to the star.

Time
(Myr)

id M
(Mjup)

a (au) e i (◦) id M
(Mjup)

a (au) e i (◦)

3.10 1e 0.30 213.7 0.68 14.4 1d 0.15 105.5 0.18 125.0
3.14 1e 0.46 78.3 0.70 31.8 1c 0.08 33.4 0.38 100.2
3.28 1e 0.54 37.4 0.39 155.2 1b 0.05 13.5 0.29 87.5
3.85 2e 1.30 150.5 0.31 32.4 2d 0.62 118.2 0.21 37.2
4.24 2e 1.93 129.0 0.18 -31.1 2b 0.19 92.1 0.36 37.3
4.96 3e 1.03 234.0 0.50 4.0 3d 0.51 90.9 0.22 7.3
5.13 4f 0.76 401.5 0.51 -38.3 4c 0.13 130.5 0.35 -6.1
5.31 5d 0.58 130.3 0.66 -4.5 5c 0.25 115.6 0.20 -9.4
5.36 6e 0.49 160.6 0.57 7.3 6d 0.24 87.7 0.29 18.9
5.49 7e 1.12 222.3 0.69 38.7 7d 0.56 161.0 0.54 -5.0
5.83 8d 3.93 295.4 0.54 0.0 8a 0.39 96.8 0.99 7.1
5.85 8d 4.31 255.7 0.56 6.1 8c 1.61 296.1 0.52 5.2
5.91 9e 0.37 223.4 0.38 0.0 9a 0.04 215.0 0.84 -10.2
5.98 10e 0.30 101.7 0.39 18.2 10d 0.17 133.3 0.42 -10.5
6.09 5d 0.82 121.9 0.57 -26.1 5b 0.12 44.8 0.63 5.9
6.20 11e 0.81 111.1 0.62 -12.6 11d 0.39 44.4 0.44 -13.9
7.55 12d 0.13 128.1 0.19 -8.9 12b 0.04 98.4 0.60 5.1
7.71 13f 0.17 214.9 0.61 46.2 13e 0.09 42.6 0.92 24.9
8.25 14f 2.29 301.0 0.15 1.1 14e 1.20 127.8 0.01 -1.9

Table 6. Orbital elements of the planets resulting from a
merger.

Time (Myr) id a id b M
(Mjup)

a
(au)

e i (◦)

3.10 1e 1d 0.46 78.8 0.70 100.5
3.14 1e 1c 0.54 37.2 0.40 93.6
3.28 1e 1b 0.59 19.0 0.14 92.7
3.85 2e 2d 1.93 129.9 0.23 34.6
4.24 2e 2b 2.12 102.9 0.08 32.6
4.96 3e 3d 1.54 137.5 0.21 5.7
5.13 4f 4c 0.89 256.2 0.26 -9.5
5.31 5d 5c 0.82 105.1 0.55 -7.3
5.36 6e 6d 0.73 105.7 0.27 13.0
5.49 7e 7d 1.69 172.4 0.64 14.4
5.83 8d 8a 4.31 236.3 0.40 5.4
5.85 8d 8c 5.92 220.9 0.50 5.4
5.91 9e 9a 0.41 166.6 0.24 -10.1
5.98 10e 10d 0.46 98.7 0.31 1.4
6.10 5d 5b 0.94 94.8 0.54 -8.0
6.20 11e 11d 1.21 63.2 0.48 -5.4
7.55 12d 12b 0.16 107.4 0.06 -6.3
7.71 13f 13e 0.26 73.0 0.14 27.0
8.25 14f 14e 3.50 255.7 0.10 -1.3

flected in the large fraction of liberated planets that escape
the cluster.

In Fig. 11 we present the mass distribution of free-
floating planets. The ones that remain bound to the cluster
have statistically the same mass function as those that es-
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Fig. 10: Cumulative distribution (normalized) of the veloc-
ity of planets (black curves) and stars (red curves) at an age
of 11 Myr. Planets and stars bound to the cluster are plot-
ted with a thin line, the thick curves indicate the unbound
objects.

cape (KS-statistics of 0.14), and to the global initial planet
mass function (KS = 0.11, see also Fig. 6). Signifying what
we already discussed in relation to Fig. 6 and Fig. 7: the
ejection of planets is independent of their mass (see also
Malmberg et al. 2011; Veras & Moeckel 2012).

The mass-distributions of free-floating planets in the
simulation differs considerably from the observed mass-
distribution. Observational selection effects probably play
an important role here because low-mass free-floating plan-
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Fig. 11: Cumulative distribution of the masses of all
planets (red), the free-floating planets that are bound
to the cluster (green) and those unbound from the
cluster (blue). These three curves are statistically in-
distinghuishable. The dotted curve gives the mass
distribution of 16 observed potential free-floating plan-
ets from Luhman et al. (2005); Marsh et al. (2010);
Zapatero Osorio et al. (2000); Delorme et al. (2012);
Liu et al. (2013); Gagné et al. (2014c); Schneider et al.
(2014); Luhman (2014); Gagné et al. (2014a); Liu et al.
(2016); Gagné et al. (2014b, 2015); Kellogg et al. (2016);
Schneider et al. (2016). For different comparison, we
introduce a lower-mass cut-off to the initial sample of
planets of 2MJup and compare it with the observed sample
(black).

ets tend to be very hard to discover. We, therefore, intro-
duce a lower-limit of 2.5MJup to the mass-distribution the
simulated distribution of free floaters becomes statistically
indistinguishable to the observed sample (KS-statistic is
0.06).

In relation to Fig. 7, we argued that the lack of a
mass-dependency of the production of free-floating plan-
ets is mainly caused by the importance of strong encoun-
ters with other stars rather than internal scattering among
planets. To quantify this hypothesis we present in Fig. 12
the cumulative distributions of the number of strong and
weak encounters. Here strong indicates an encounter within
1500 au. In this analysis, a planet that becomes free-floating
within 0.5 Myr of such a strong encounter is considered to
be liberated as a result of this, otherwise, we consider the
planet to be lost as a result of a weak encounter or due to
the internal reorganization of the planetary system.

To further understand the importance of strong encoun-
ters we present in Fig. 13 the delay time distribution of lib-
erated planets. The majority of those escape promptly upon
a strong encounter with another planetary system or a sin-
gle star. A considerable fraction (∼ 24%) requires more
time (up to about a million years) before they escape from
their host star. In this latter population, planetary escape
is initiated by the close encounter, but it requires the plan-
etary system to become dynamically unstable before the
planet is actually ejected. The time scale for these plane-
tary systems to become unstable appears to be of the order
of a million years.
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Fig. 12: Number of planets that became unbound from their
host star as a function of time. The number of planets that
escaped their host within 0.5 Myr following a strong en-
counter (within 1500 au, red curve) is about twice as large
as the planets that escape without evidence of having expe-
rienced a strong encounter (black curve). The dotted black
curves indicate the dependency on the time-scale within
which a strong encounter is supposed to lead to ejected
planets; the lower curves give the cumulative distribution
for planets that are liberated within 1 Myr of a close en-
counter, whereas the upper curve is for 0.2525 Myr).
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Fig. 13: Number of planets that escape from their host star
as a function of the time between a close encounter (within
1500 au) and the moment of escape. The majority of the
planets escape promptly upon an encounter, but a consid-
erable fraction requires more time, up to about a million
years.

The number of Jupiter-mass free-floating planets has
been estimated to about 0.25 of the number of main-
sequence stars (Cassan et al. 2012; Mróz et al. 2017). This
fraction is consistent with our findings, even though we
adopted that only about one-third of the stars had planets
initially. If each star would have a planetary system, our
estimates would rise to about ∼ 0.72 free-floating plan-
ets per main-sequence star which would be on the high
side but not inconsistent with the observed estimate of
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1.8+1.7
−0.8 (Sumi et al. 2011). Although not taken into account

here, the number of free-floating planets produced per star
depends on the moment circumstellar disks start forming
planetary systems, their distribution in mass and orbital
parameters, and on the density and velocity distribution of
the young cluster.

5. Discussion

We simulated the evolution of a cluster of 1500 stars
of which 500 are orbited by a total of 2522 plan-
ets (4, 5 or 6 planets of 0.008MJup to 130MJup per
star in circular planar orbits between 10 au and 400 au).
The calculations are performed using the Nemesis script
in the Astrophysical Multipurpose Software Environ-
ment (Portegies Zwart 2011; Portegies Zwart et al. 2018;
Portegies Zwart & McMillan 2018), and includes the effects
of stellar mass loss and the interactions between all objects.
The initial conditions are taken from earlier calculations
that mimicking the mass and size distributions of the Orion
trapezium star-cluster (Portegies Zwart 2016). We stopped
the calculations at an age of 11 Myr, after which we analyze
the population of planets.

In our calculations, we ignored the effect of tidal energy-
dissipation between stars and planets. When we started this
study we argued that this effect had minor consequences,
but it turned out that 75 of the planets (3.0 %) have a strong
interaction with their host star and 34 planets collide with
other planets. Tidal interactions are clearly important, and
we will improve this a future version of Nemesis. Consid-
ering these systems as resulting either in a collision with
the parent star or the formation of a hot Jupiter, we derive
a hot-Jupiter formation efficiency of 75 per 500 planetary
systems per 10 Myr, or 15% of the planetary systems pro-
duce a hot Jupiter, which is not inconsistent with the rate
derived by Heller (2018).

Our study mainly focuses on the production of
free-floating planets. The planet-ejection probabilities in
our simulations are independent of the mass of the
planet, which is in contradiction with earlier results of
Malmberg et al. (2011); Davies et al. (2014). Part of this
result probably depends quite sensitively on our initial dis-
tributions of planet mass and orbital topology. The choice
of oligarchic growth causes the more massive planets to be
further away from the host star, where they are more vul-
nerable to perturbations by passing stars. This makes the
inner planets more prone to being ejected in the subsequent
unstable planetary system that result from an external per-
turbation.

Our finding that the probability of escaping the parent
star is independent of planet mass and the birth distance
from the star is a direct consequence of the way in which
planets are freed, i.e., in most cases this is the result of
a strong encounter between the planetary system and an-
other star or planetary system. In our simulations, interac-
tions between planets and stars lead to a total of 357 free-
floating planets from an initial population of 2522 bound
planets. This results in 0.24 to 0.70 free-floating planets
per main-sequence star, which is consistent with estimates
of the number of free-floating planets in the Galaxy by
Cassan et al. (2012) and Mróz et al. (2017).

An important reason for the relatively small number of
free floaters is their relatively late formation. Most interac-
tions occur in the first 1 Myr of the evolution of the cluster,

strong dynamical encounters drive in this phase the size-
evolution of the circumstellar disks. By the time we intro-
duced the planets the stellar density had already dropped
considerably and the number of strong interactions had sub-
sided. The absence of planets in the first Myr enables them
to survive to a later epoch. If these disks were already rich
in debris or planets they would have been much more vul-
nerable to external perturbations. The mutual interactions
between stars in the earliest cluster evolution <

∼ 1Myr
would have been sufficient for ionizing most planetary sys-
tems, leading to a larger population of free-floating objects.
Such a Sola lapis has recently been found traversing the So-
lar system (Portegies Zwart et al. 2018b).

The distribution of the masses of free-floating planets
in our simulation is indistinguishable from the mass distri-
bution of planets bound to their host star. This may have
interesting consequences for observations. This comparison
may also be made for observed planets. Our cluster is not
old enough to produce free-floating planets by the copious
stellar mass-loss in the post-asymptotic giant branch phase,
and it is not a priori clear what effect this would have on
the distribution and ejection of multi-planet systems. But
to first order we argue that the distribution of free-floating
planets is the same as that of bound planets.

6. Conclusions

We simulated the evolution of the Orion trapezium star-
cluster including planets. The calculations start with initial
conditions taken from earlier calculations at an age of 1 Myr
from Portegies Zwart (2016) by converting the circumstel-
lar disks into planetary systems, and were continued to an
age of 11 Myr. Our calculations, performed with the Astro-
physical Multipurpose Software Environment, include the
effects of stellar mass loss, collisions, and the dynamics of
the stars and planets. The orbits of the planets are inte-
grated using a symplectic direct N -body code whereas the
stellar dynamics is resolved using a direct Hermite N -body
code.

Realizing that we study a chaotic system based on the
result of only two simulations, one without stellar interac-
tions and one that included interactions between the plan-
ets and the stars, we nevertheless, feel sufficiently bolstered
by our results to report a number of conclusions. Each of
these conclusions is based on the results obtained from the
simulation in which all interactions between stars and plan-
ets are taken into account. The results enumerated below
are therefore rather empirical, although, as argued in the
main text, some of these conclusions may be fundamental.
All conclusions, however, are a result of the complicated
interplay between initial conditions and simulations, and it
is sometimes hard to disentangle the two.

Conclusions regarding planet stability
• The majority of planets (∼ 70%) experience a

change in their orbits (in eccentricity or semi-major
axis) of less than 5%.

• A small fraction of ∼ 10% planets acquire a high
( >
∼ 0.8) eccentricity. This is not necessarily caused

by stars passing closely, but in the majority of cases
repeated small perturbations within the cluster and
subsequent secular evolution within the planetary
system drives these high eccentricities.

• High eccentricities are also induced by collisions be-
tween planets and in the orbits of captured planets.
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• The innermost planets (at 10 au) experiences a com-
parable relative variation in their final orbital pa-
rameters (in particular the eccentricity and inclina-
tion) due to encounters, perturbations and internal
secular evolution as wider systems.

• The probability for a planet to escape is indepen-
dent of its mass or semi-major axis. Low-mass plan-
ets that are born relatively close to the parent star
are only marginally more prone to ejection than
more massive planets born further out (see also,
Malmberg et al. 2011; Veras & Moeckel 2012). This
result, however, probably depends quite sensitively
on the initial orbital distributions and masses of the
planets. Comparing observed planet-mass distribu-
tions and those that survived in a planetary systems
may then provide interesting constraints on the ini-
tial planet mass-function.

• 75 planets (3.0%) collide with their host star. This
number, however, strongly depends on our adopted
stellar collision radius and will change when tidal
evolution is properly taken into account, but we still
expect that collisions between a planet and its host
star are rather frequent. although our collisions are
not taken into account realistically, due to the large
stellar size we adopted, these system would be eligi-
ble to the formation of hot jupiter planets at a rate
of ∼ 0.015 per star per Myr.

• The widest planetary systems in our simulations
tend to be formed either by ejecting planets on very
wide and highly eccentric orbits or by capturing a
planet from another star. Both methods seem to be
equally important, but the captured planets tend to
have somewhat lower eccentricity.

Conclusions regarding planetary escapers

• A total of 357 planets (out of 2522 or ∼ 16.5%)
become unbound from their parent star.

• 282 out of 357 (∼ 80%) of the free floating plan-
ets promptly escape the cluster upon being unbound
from their parent stars.

• The probability for a planet to escape is independent
of its mass. As a consequence, the mass function of
free-floating planets and the mass function of bound
planets are indistinguishable from the initial distri-
bution of planet masses.

• At the end of our simulations systems with 3 planets
were rare compared to systems with one or two plan-
ets, or systems with 4 or more planets. Once a star
loses planets, it tends to lose 3 or more (consistent
with Table 9 of Cai et al. 2017).

Conclusions regarding planet collisions

• 34 planets (1.3%) experienced a collision with an-
other planet.

• The collision probability between two planets is in-
dependent of planet mass.

• The orbits of planet-planet collisions have a mean
eccentricity of 0.33± 0.19 and a relative inclination
of 20◦ ± 35◦.

• instead of colliding, some of those events may lead
to the tidal capture of one planet by another. This
would lead to the formation of a binary planet, or
moon, as was observed in Kepler 1625B ?.

• It is generally the outermost planet that collides with
a planet closer to the parent star. This inner planet
is not necessarily the next nearest planet.

• Planets regularly engage in a cascade of collisions.
These chain-collisions are initiated by a dynamical
encounter with another star.

Conclusions regarding the host star cluster
• 240 (67% of the ejected planets, 10% of all planets)

planets are ejected from their host star with a delay
of 0.1–0.5Myr after the last strong encounter with
another cluster member.

• Young ∼ 10Myr old star clusters harbour a rich pop-
ulation of free-floating planets. About 1/3th of the
free-floating planets remain in the cluster for more
than a dynamical time scale, up to the end of the
simulation. The number of free floaters in these clus-
ters can be as high as 40 planets for stars between
0.9M⊙ and 1.1M⊙, or 25% of the main-sequence
stars (consistent with estimates by Cassan et al.
2012).
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Appendix A: Validation

Here we analyse the accurancy of the hybrid Nemesis strat-
egy as a function of the interaction timestep dtNemesis.

Appendix A.0.1: Determining the optimal Nemesis time-step

This Nemesis time-step (dtNemesis) numerically associates
two important factors; how often forces between subsys-
tems are calculated, and it provides a measure for the in-
teraction distance between individual particles (dNemesis).
If two particles are separated by less than this interaction
distance (dNemesis) a new subsystem is created within which
the interaction between particles is resolved with a separate
N -body integrator. In principle we create a new subsystem
with its own individual N -body solver. In practice, how-
ever, many of these individual subsystem N -body solvers
are the same code.

If one particle is spatially separated from several other
particles in a subsystem by a distance larger than the inter-
action distance, dNemesis, this particle is removed from the
subsystem and incorporated in the global cluster integra-
tion code. For the physics it makes no difference if a particle
is part of the global system or of a subsystem. However, the
integrator used for any of the subsystems is symplectic and
generally more accurate by adopting higher order and a
smaller timestep, whereas the global N -body code adopts
larger time steps and is not symplectic.

There is no specific requirement for any particle to be in-
tegrated either by a subsystem’s integrator or by the global
integrator. The choice of the domain to which the particle
belongs is purely based on geometry and the adopted de-
mands for accuracy and precision. In practice, the entire
cluster including all the planets could either be integrated
by the single global 4th order Hermite code or by one of
the subsystem’s symplectic N -body codes. The chaise of
which particle is integrated by what integrator is then only
decided on terms of accuracy, precision and performance.

As a general note, however, the global N -body code
tends to be less accurate, due to larger time stepping and
non-symplectic, whereas the subsystem codes adopt rather
small shared time steps with a symplectic integrator. As a
consequence, we prefer to keep particles that belong to a
single planetary system in the same integrator.

The number of stars and planets that are embedded
within a single subsystem depends on dtNemesis (and there-
fore on dNemesis). In Fig. A.1 we show how this number varies
as a function of dtNemesis. For very small values of dtNemesis,
all the stars and planets are integrated by the global N -
body integrator, and the number of subsystems n drops to
1, in the extreme. On the other hand, if dtNemesis >

∼ 200 yr
all initial planetary systems being recognized as individual
subsystems and assigned their own integrator. In that case,
the number of subsystems grows to the actual number of
planetary systems we initialized plus one for the global N -
body system, and n approaches to a value of 501. We draw
a vertical line at dtNemesis = 100 yr, which corresponds to
our adopted Nemesis time-step. For this value, a total of
about 400 N -body integrators are being initialized and run
concurrently.
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Fig. A.1: The number of the initial intact planetary systems
as a function of the Nemesis time-step. The chosen time-
step of 100 yr is shown as a green vertical line. The time-step
is not optimal for this criterion, but was chosen as it gives
better accuracy and a higher computational speed.

Appendix A.0.2: The subsystem size-criterion in Nemesis

The analysis performed in the previous section is calculated
on a static initial realization without evolving the cluster
dynamically. In § A.0.1 we demonstrated that at a larger
time-step individual planetary systems are consistently cap-
tured in a subsystem. A larger time step is also preferred
because this requires fewer interaction steps between the
subsystems and the other particles. The evolution of the
cluster, however, is dynamic and as a consequence, the value
of dtNemesis should be dynamics to warrant the accuracy and
efficiency of the Nemesis method. We test this hypothesis
by integrating the cluster for 0.1Myr with various values of
dtNemesis. After this time we measure the radius the largest
resolved subsystem. These largest resolved subsystems tend
to slow down the integration because they are likely to be
composed of a larger number of particles (stars and plan-
ets). Such large subsystems may cause the entire calcula-
tion to wait for the integration of the large subsystem. the
calculation becomes progressively slower when more par-
ticles are incorporated in the subsystem. Eventually, this
may continue until all the particles are embedded in a sin-
gle subsystem, which is beyond the purpose of the Nemesis
module.

In Fig. A.2 we present the measured size of subsys-
tems as a function of dtNemesis. The optimum is reached
for a dtNemesis ≃ 100 yr, which results in a maximum ra-
dius for subsystems of ∼ 1738 au. The choice of a time
of dtNemesis ≃ 100 yr results in the most efficient calcula-
tion of the entire stellar system while at the same time
it results in the lowest the energy error. With this time
step our calculations conserve energy better than one part
in 104 per planetary system per Myr, which is sufficient
to preserve the phase space characteristics of N -body sys-
tems for the 10 Myr over which we performed the simulation
(Portegies Zwart & Boekholt 2014).

The two criteria (1) keep each initial planetary system
in a single subsystem and (2) prevent subsystems to grow
boundless, suggest opposing optimal values for the Neme-
sis timestep dtNemesis. Both criteria appear to match for
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Fig. A.2: The size of the largest subsystem as a function of
dtNemesis. after 0.1 Myr of evolution. The vertical green line
indicates the adopted value of 100 yr.

dtNemesis ≃ 100 yr, which is the value we adopt for all fur-
ther calculations.

Appendix A.0.3: Validation of Nemesis on individual
planetary systems

Apart from tuning the performance and accuracy of the
compound Nemesis integrator, we also validate it in a more
practical application. For this we opted for studying the
evolution of a system of 5 planets that is orbited by another
second star of 1M⊙ with a semi-major axis of 1500 au, and
an eccentricity of 0.5 and an inclination of 90◦. The plane-
tary system is generated using the oligarchic growth model
for a 1M⊙ star with a 400 au disk of 0.1M⊙. The simula-
tions are performed using two distinct methods: (1) using
Nemesis and (2) integrating all objects in a single N -body
code. The Nemesis method requires two codes, one for the
planetary system and one for the centre of mass of the plan-
etary system and the orbiting secondary star.

For both integrators, we selected the 8th order symplec-
tic integrator in Huayno. The two codes communicate using
a Nemesis time-step of dtNemesis = 100 yr. For comparison,
we also integrate these planetary systems with the same
integrator, but all the objects stars and planets are in the
same computational domain. In Fig. A.3 we present the ec-
centricities of the planets as a function of the semi-major
axis at an age of 0.5 Myr.

Based on the integration of these planetary systems,
and the earlier tests regarding the migration of planets
across integrators we decide that a Nemesis time step of
dtNemesis = 100 yr gives satisfactory results in terms of ac-
curacy, precision and performance.

Appendix A.0.4: Energy errors in the composite model

To determine the reliability of the Nemesis for planetary
system evolution, we also investigate the evolution of the
energy error. We perform this test for the same model as
in the previous section, using an isolated planetary sys-
tem composed of 5 planets and one perturbing star in
a wide orbit. We simulate this system using our method
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Fig. A.3: Eccentricity as a function of semi-major axis for a
planetary system orbited by a secondary star of 1M⊙ after
0.5Myr of integration using Nemesis (big black bullets)
and the single 8th order symplectic integrator in Huayno
(smaller white bullets). The final eccentricity of the planets
in the direct integration and the component method are
indistinguishable in the figure, with an absolute mean error
< 2× 10−4 for each of the planets.

and a 4th order Hermite integrator using a time step of
dtNemesis = 100 yr. The resulting evolution of the energy
error is presented in In Fig. A.4.
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Fig. A.4: The total energy error as a function of time for
a validation simulation consisting of a single star orbiting
a system of 5 planets. The energy error of our method (in
red) is compared to the results obtained using a 4th or-
der Hermite code for all particles (green). The time evo-
lution of the energy error is more erratic in the Nemesis
method, due to the close interactions of the orbiting star.
The overall error, however, remains rather constant over a
long timescale, whereas for the Hermite method the energy
error is smoother but clearly grows with time.

In Fig. A.4 we show the results of the two calculations,
one with a 4th order Hermite integrator (green), which is
not symplectic. The other calculation (red curve) is per-
formed using Nemesis in which we combine an 8th-order
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symplectic integrator for the planetary system with the 4th-
order Hermite integrator for the binary system. The energy
error in the Hermite (green curve) grows monotonically:
the typical response for a non-symplectic integrator, such
as the adopted Hermite scheme. The evolution of the energy
error in the hybrid integrator does not grow on a secular
timescale. The evolution of the energy error is rather erratic
with sharp peaks to low values as well as high values but
stays overall stable. The secular growth of Nemesis is much
smaller than the single Hermite integrator. This is mainly
caused by the fact that the largest energy errors are gener-
ated while integrating the planetary system, which, in the
Hermite integration (green curve) drives the energy error.
An additional advantage is that the calculation with the
hybrid Nemesis method took about 10 minutes on a work-
station, whereas the Hermite scheme (green curve) took 18
hours.

Based on the results presented in Fig. A.4, we conclude
that in our method the energy error does not grow with
time, but remains constant for the duration of the calcu-
lation. The Hermite-part of the integration does show a
monotonic increase of the energy error, but this error re-
mains below the mean error produced in the subsystem
code, which is symplectic. The overall energy error, there-
fore, appears well behaved, but eventually, in the long run,
the non-symplectic part of the energy error may start to
dominate.
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