632 research outputs found
Color-coordinate system from a 13th-century account of rainbows.
We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride (On the Rainbow), dating from the early 13th century. The work explores color within the 3D framework set out in Grosseteste’s De colore [see J. Opt. Soc. Am. A 29, A346 (2012)], but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms
Host-driven diversification of gall-inducing Acacia thrips and the aridification of Australia
BACKGROUND: Insects that feed on plants contribute greatly to the generation of biodiversity. Hypotheses explaining rate increases in phytophagous insect diversification and mechanisms driving speciation in such specialists remain vexing despite considerable attention. The proliferation of plant-feeding insects and their hosts are expected to broadly parallel one another where climate change over geological timescales imposes consequences for the diversification of flora and fauna via habitat modification. This work uses a phylogenetic approach to investigate the premise that the aridification of Australia, and subsequent expansion and modification of arid-adapted host flora, has implications for the diversification of insects that specialise on them. RESULTS: Likelihood ratio tests indicated the possibility of hard molecular polytomies within two co-radiating gall-inducing species complexes specialising on the same set of host species. Significant tree asymmetry is indicated at a branch adjacent to an inferred transition to a Plurinerves ancestral host species. Lineage by time diversification plots indicate gall-thrips that specialise on Plurinerves hosts differentially experienced an explosive period of speciation contemporaneous with climatic cycling during the Quaternary period. Chronological analyses indicated that the approximate age of origin of gall-inducing thrips on Acacia might be as recent as 10 million years ago during the Miocene, as truly arid landscapes first developed in Australia. CONCLUSION: Host-plant diversification and spatial heterogeneity of hosts have increased the potential for specialisation, resource partitioning, and unoccupied ecological niche availability for gall-thrips on Australian Acacia
Phase Separation in Binary Fluid Mixtures with Continuously Ramped Temperature
We consider the demixing of a binary fluid mixture, under gravity, which is
steadily driven into a two phase region by slowly ramping the temperature. We
assume, as a first approximation, that the system remains spatially isothermal,
and examine the interplay of two competing nonlinearities. One of these arises
because the supersaturation is greatest far from the meniscus, creating
inversion of the density which can lead to fluid motion; although isothermal,
this is somewhat like the Benard problem (a single-phase fluid heated from
below). The other is the intrinsic diffusive instability which results either
in nucleation or in spinodal decomposition at large supersaturations.
Experimental results on a simple binary mixture show interesting oscillations
in heat capacity and optical properties for a wide range of ramp parameters. We
argue that these oscillations arise under conditions where both nonlinearities
are important
Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis
Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization
An Invariance Principle of G-Brownian Motion for the Law of the Iterated Logarithm under G-expectation
The classical law of the iterated logarithm (LIL for short)as fundamental
limit theorems in probability theory play an important role in the development
of probability theory and its applications. Strassen (1964) extended LIL to
large classes of functional random variables, it is well known as the
invariance principle for LIL which provide an extremely powerful tool in
probability and statistical inference. But recently many phenomena show that
the linearity of probability is a limit for applications, for example in
finance, statistics. As while a nonlinear expectation--- G-expectation has
attracted extensive attentions of mathematicians and economists, more and more
people began to study the nature of the G-expectation space. A natural question
is: Can the classical invariance principle for LIL be generalized under
G-expectation space? This paper gives a positive answer. We present the
invariance principle of G-Brownian motion for the law of the iterated logarithm
under G-expectation
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
Stretched Polymers in Random Environment
We survey recent results and open questions on the ballistic phase of
stretched polymers in both annealed and quenched random environments.Comment: Dedicated to Erwin Bolthausen on the occasion of his 65th birthda
- …