35 research outputs found

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] = 0.99, 95% confidence interval [CI] = 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc = 0.79, 95% CI = 0.69 to 0.91; HRc = 0.70, 95% CI = 0.59 to 0.82; HRc = 0.50, 95% CI = 0.40 to 0.63, for 2, 3, and ≥4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trend = .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] = 1.69, 95% CI = 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc = 1.33, 95% CI = 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc = 0.72, 95% CI = 0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Data from: Personal information about danger trumps social information from avian alarm calls

    No full text
    Information about predators can mean the difference between life and death, but prey face the challenge of integrating personal information about predators with social information from the alarm calls of others. This challenge might even affect the structure of interspecific information networks: species vary in response to alarm calls, potentially because different foraging ecologies constrain the acquisition of personal information. However, the hypothesis that constrained personal information explains a greater response to alarm calls has not been experimentally tested. We used a within-species test to compare the antipredator responses of New Holland honeyeaters, Phylidonyris novaehollandiae, during contrasting foraging behaviour. Compared to perched birds, which hawk for insects and have a broad view, those foraging on flowers were slower to spot gliding model predators, showing that foraging behaviour can affect predator detection. Furthermore, nectar-foraging birds were more likely to flee to alarm call playbacks. Birds also assessed social information relevance: more distant calls, and those from another species, prompted fewer flights and slower reaction times. Overall, birds made flexible decisions about danger by integrating personal and social information, while weighing information relevance. These findings support the idea that a strategic balance of personal and social information could affect community function

    Managed relocation: Integrating the scientific, regulatory, and ethical challenges

    No full text
    Managed relocation is defined as the movement of species, populations, or genotypes to places outside the areas of their historical distributions to maintain biological diversity or ecosystem functioning with changing climate. It has been claimed that a major extinction event is under way and that climate change is increasing its severity. Projections indicating that climate change may drive substantial losses of biodiversity have compelled some scientists to suggest that traditional management strategies are insufficient. The managed relocation of species is a controversial management response to climate change. The published literature has emphasized biological concerns over difficult ethical, legal, and policy issues. Furthermore, ongoing managed relocation actions lack scientific and societal engagement. Our interdisciplinary team considered ethics, law, policy, ecology, and natural resources management in order to identify the key issues of managed relocation relevant for developing sound policies that support decisions for resource management. We recommend that government agencies develop and adopt best practices for managed relocation

    Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges

    Get PDF
    Managed relocation is defined as the movement of species, populations, or genotypes to places outside the areas of their historical distributions to maintain biological diversity or ecosystem functioning with changing climate. It has been claimed that a major extinction event is under way and that climate change is increasing its severity. Projections indicating that climate change may drive substantial losses of biodiversity have compelled some scientists to suggest that traditional management strategies are insufficient. The managed relocation of species is a controversial management response to climate change. The published literature has emphasized biological concerns over difficult ethical, legal, and policy issues. Furthermore, ongoing managed relocation actions lack scientific and societal engagement. Our interdisciplinary team considered ethics, law, policy, ecology, and natural resources management in order to identify the key issues of managed relocation relevant for developing sound policies that support decisions for resource management. We recommend that government agencies develop and adopt best practices for managed relocation
    corecore