154 research outputs found
A Community and University Collaborative: Responding to the Opioid Crisis
One of the 12 Grand Challenges of Social Work, as identified by the American Academy of Social Work and Social Welfare (2018), is Ensuring Healthy Development for all Youth. This article explores the importance of community-wide prevention efforts in meeting this challenge by utilizing grassroots coalition action in concert with engaged universities. Through perspectives of the Communities that Care Model and an Engaged University Model, this case study examines one community’s response to reduce the prevalence of youth substance abuse behaviors. Recommendations include effective coalition building strategies
Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior
The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptors (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-Aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds Designer Receptors Exclusively Activated by a Designer Drug (DREADDs), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression (LTD)-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping (DREAMM) to profile brain-wide network activity following activation of Gq-mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area (VTA), and hindbrain structures such as the locus coeruleus (LC) and parabrachial nucleus (PB). These results highlight that Gq-mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior, and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple Gq-coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the Gq-coupled receptor 5-HT2CR in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT neurons that may serve as therapeutic targets for regulating anxiety states and provide a blueprint for examining how G-protein mediated signaling in a genetically defined cell type can be used to assess behavior and brain-wide circuit function
Disruption of Glucagon-Like Peptide 1 Signaling in Sim1 Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress
Organismal stress initiates a tightly orchestrated set of responses involving complex physiological and neurocognitive systems. Here, we present evidence for glucagon-like peptide 1 (GLP-1)-mediated paraventricular hypothalamic circuit coordinating the global stress response. The GLP-1 receptor (Glp1r) in mice was knocked down in neurons expressing single-minded 1, a transcription factor abundantly expressed in the paraventricular nucleus (PVN) of the hypothalamus. Mice with single-minded 1-mediated Glp1r knockdown had reduced hypothalamic-pituitary-adrenal axis responses to both acute and chronic stress and were protected against weight loss associated with chronic stress. In addition, regional Glp1r knockdown attenuated stress-induced cardiovascular responses accompanied by decreased sympathetic drive to the heart. Finally, Glp1r knockdown reduced anxiety-like behavior, implicating PVN GLP-1 signaling in behavioral stress reactivity. Collectively, these findings support a circuit whereby brainstem GLP-1 activates PVN signaling to mount an appropriate whole-organism response to stress. These results raise the possibility that dysfunction of this system may contribute to stress-related pathologies, and thereby provide a novel target for intervention
Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain
The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure—the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release
Computed Tomography of the Mandibles of a Stranded Offshore Killer Whale (Orcinus orca)
A mature, adult female, offshore killer whale (Orcinus orca) was stranded deceased in Portage Bay, Alaska, in October 2015. Full necropsy examination with histopathology was performed. Consistent with previous studies of offshore killer whales, and thought to be a result of their unique elasmobranch diet, all the teeth were significantly abraded and almost flush with the gingival margin. Age was estimated at 30–35 years based on annuli and growth arrest lines in a remaining tooth. The dentate portion of the mandibles were excised en bloc and frozen until imaging could be completed. Radiography and computed tomography revealed lesions consistent with severe abrasion, pulp exposure and evidence of endodontic and/or periodontal disease in nine of the 15 mandibular teeth present (60.0%). Only five (33.3%) teeth were suspected to have been vital at the time of death based on imaging. Lesions were more severe rostrally, with the caudal teeth less affected. Autolysis precluded gingival histopathology and no teeth were analyzed histologically. Necropsy examination revealed a likely multifactorial cause of death, with most significant lesions including the severe chronic periodontal/endodontic disease with abrasion, inanition and emaciation with possible cardiovascular disease. This case highlights the importance of imaging in evaluating periodontal and endodontic status, especially post mortem when other tissues are no longer available, and demonstrates that periodontal and endodontic disease occur naturally in this species and can be a significant cause of morbidity in mature free-ranging killer whales of the offshore ecotype
Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans
DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 � 10?6). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability
- …