923 research outputs found

    Constraints on hot metals in the Vicinity of the Galaxy

    Full text link
    We have searched for evidence of soft X-ray absorption by hot metals in the vicinity of the Galaxy in the spectra of a small sample of fifteen Type I AGN observed with the high resolution X-ray gratings on board Chandra. This is an extension of our previous survey of hot OVII and OVIII absorbing gas in the vicinity of the Galaxy. The strongest absorption signatures within a few hundred km/s of their rest-frame energies are most likely due to warm absorbing outflows from the nearest AGN, which are back-lighting the local hot gas. We emphasize that absorption signatures in the spectra of some distant AGN that are kinematically consistent with the recessional velocity of the AGN are most likely to be due to hot local gas. Along the sightline towards PG 1211+143, PDS 456 and MCG-6-30-15 there is a very large absorbing Fe column density which is kinematically consistent with absorption by hot, local Fe. The sightlines to these three AGN pass through the limb of the Northern Polar Spur (NPS), a local bubble formed from several supernovae which, if rich in Fe, may account for a large local Fe column. We obtain limits on the column density of local, highly ionized N, Ne, Mg, Si along all of the sightlines in our sample. We correlate the column density limits with those of highly ionized O along the same sightlines. Assuming the hot local gas is in collisionally ionized equilibrium, we obtain limits on the temperature and relative abundances of the metals in the hot local gas. Our limits on the ionic column densities in the local hot gas seem to be consistent with those observed in the hot halo gas of edge-on normal spiral galaxies.Comment: 9 pages,2 figures, MNRAS (accepted

    Intermediate mass black holes in AGN disks: I. Production & Growth

    Full text link
    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in disks around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disk. Stars, compact objects and binaries can migrate, accrete and merge within disks around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disk, gas in the disk damps NCO orbits. If gas damping dominates, NCOs remain in the disk with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disk NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disk NCOs, growth of IMBH seeds can become dominated by gas accretion from the AGN disk. However, the IMBH can migrate in the disk and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN disks with models of giant planet growth in protoplanetary disks. If an IMBH becomes massive enough it can open a gap in the AGN disk. IMBH migration in AGN disks may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN disks than the standard model of IMBH growth in stellar clusters. Dynamical heating of disk NCOs by cusp stars is transferred to the gas in a AGN disk helping to maintain the outer disk against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).Comment: 11 pages, 4 figures, MNRAS (accepted

    Black Hole Mass, Host galaxy classification and AGN activity

    Full text link
    We investigate the role of host galaxy classification and black hole mass in a heterogeneous sample of 276 mostly nearby (z<0.1) X-ray and IR selected AGN. Around 90% of Seyfert 1 AGN in bulge-dominated host galaxies (without disk contamination) span a very narrow range in the observed 12um to 2-10keV luminosity ratio (1<R_{IR/X}<7). This narrow dispersion incorporates all possible variations among AGN central engines, including accretion mechanism and efficiency, disk opening angle, orientation to sightline, covering fraction of absorbing material, patchiness of X-ray corona and measured variability. As a result, all models of X-ray and IR production in AGN are very strongly constrained. Among Seyfert 1 AGN, median X-ray and IR luminosities increase with black hole mass at >99% confidence. Using ring morphology of the host galaxy as a proxy for lack of tidal interaction, we find that AGN luminosity in host galaxies within 70Mpc is independent of host galaxy interaction for ∼\sim Gyrs, suggesting that the timescale of AGN activity due to secular evolution is much shorter than that due to tidal interactions. We find that LINER hosts have lower 12um luminosity than the median 12um luminosity of normal disk- and bulge-dominated galaxies which may represent observational evidence for past epochs of feedback that supressed star formation in LINER host galaxies. We propose that nuclear ULXs may account for the X-ray emission from LINER 2s without flat-spectrum, compact radio cores. We confirmed the robustness of our results in X-rays by comparing them with the 14-195keV 22-month BAT survey of AGN, which is all-sky and unbiased by photoelectric absorption.Comment: MNRAS accepted. 14 pages, 11 figures, complete Table 1 in online journa

    On rapid migration and accretion within disks around supermassive black holes

    Full text link
    Galactic nuclei should contain a cluster of stars and compact objects in the vicinity of the central supermassive black hole due to stellar evolution, minor mergers and gravitational dynamical friction. By analogy with protoplanetary migration, nuclear cluster objects (NCOs) can migrate in the accretion disks that power active galactic nuclei by exchanging angular momentum with disk gas. Here we show that an individual NCO undergoing runaway outward migration comparable to Type III protoplanetary migration can generate an accretion rate corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in an AGN disk can dominate traditional viscous disk accretion and at large disk radii, ensemble NCO migration and accretion could provide sufficient heating to prevent the gravitational instability from consuming disk gas in star formation. The magnitude and energy of the X-ray soft excess observed at ~0.1-1keV in Seyfert AGN could be explained by a small population of ~10^{2}-10^{3} accreting stellar mass black holes or a few ULXs. NCO migration and accretion in AGN disks are therefore extremely important mechanisms to add to realistic models of AGN disks.Comment: 6 pages, 2 figures, MNRAS Letters (accepted

    Linear feedback control of transient energy growth and control performance limitations in subcritical plane Poiseuille flow

    Get PDF
    Suppression of the transient energy growth in subcritical plane Poiseuille flow via feedback control is addressed. It is assumed that the time derivative of any of the velocity components can be imposed at the walls as control input, and that full-state information is available. We show that it is impossible to design a linear state-feedback controller that leads to a closed-loop flow system without transient energy growth. In a subsequent step, full-state feedback controllers -- directly targeting the transient growth mechanism -- are designed, using a procedure based on a Linear Matrix Inequalities approach. The performance of such controllers is analyzed first in the linear case, where comparison to previously proposed linear-quadratic optimal controllers is made; further, transition thresholds are evaluated via Direct Numerical Simulations of the controlled three-dimensional Poiseuille flow against different initial conditions of physical interest, employing different velocity components as wall actuation. The present controllers are effective in increasing the transition thresholds in closed loop, with varying degree of performance depending on the initial condition and the actuation component employed
    • …
    corecore