168 research outputs found

    Coordinate regulation of fibronectin matrix assembly by the plasminogen activator system and vitronectin in human osteosarcoma cells

    Get PDF
    BACKGROUND: Plasminogen activators are known to play a key role in the remodeling of bone matrix which occurs during tumor progression, bone metastasis and bone growth. Dysfunctional remodeling of bone matrix gives rise to the osteoblastic and osteolytic lesions seen in association with metastatic cancers. The molecular mechanisms responsible for the development of these lesions are not well understood. Studies were undertaken to address the role of the plasminogen activator system in the regulation of fibronectin matrix assembly in the osteoblast-like cell line, MG-63. RESULTS: Treatment of MG-63 cells with P25, a peptide ligand for uPAR, resulted in an increase in assembly of fibronectin matrix which was associated with an increase in the number of activated ÎČ1 integrins on the cell surface. Overexpression of uPAR in MG-63 cells increased the effect of P25 on fibronectin matrix assembly and ÎČ(1 )integrin activation. P25 had no effect on uPAR null fibroblasts, confirming a role for uPAR in this process. The addition of plasminogen activator inhibitor Type I (PAI-1) to cells increased the P25-induced fibronectin polymerization, as well as the number of activated integrins. This positive regulation of PAI-1 on fibronectin assembly was independent of PAI-1's anti-proteinase activity, but acted through PAI-1 binding to the somatomedin B domain of vitronectin. CONCLUSION: These results indicate that vitronectin modulates fibronectin matrix assembly in osteosarcoma cells through a novel mechanism involving cross-talk through the plasminogen activator system

    Evidence for different thermal ecotypes in range centre and trailing edge kelp populations

    Get PDF
    Determining and predicting species’ responses to climate change is a fundamental goal of contemporary ecology. When interpreting responses to warming species are often treated as a single physiological unit with a single species-wide thermal niche. This assumes that trailing edge populations are most vulnerable to warming, as it is here where a species’ thermal niche will be exceeded first. Local adaptation can, however, result in narrower thermal tolerance limits for local populations, so that similar relative increases in temperature can exceed local niches throughout a species range. We used a combination of common garden temperature heat-shock experiments (8–32 °C) and population genetics (microsatellites) to identify thermal ecotypes of northeast Atlantic range centre and trailing edge populations of the habitat-forming kelp, Laminaria digitata. Using upregulation of hsp70 as an indicator of thermal stress, we found that trailing edge populations were better equipped to tolerate acute temperature shocks. This pattern was consistent across seasons, indicating that between-population variability is fixed. High genetic structuring was also observed, with range centre and trailing edge populations representing highly distinct clusters with little gene flow between regions. Taken together, this suggests the presence of distinct thermal ecotypes for L. digitata, which may mean responses to future warming are more complex than linear range contractions. © 2019 Elsevier B.V

    Test-retest reliability of spectral parameterization by 1/f characterization using SpecParam

    Get PDF
    SpecParam (formally known as FOOOF) allows for the refined measurements of electroencephalography periodic and aperiodic activity, and potentially provides a non-invasive measurement of excitation: inhibition balance. However, little is known about the psychometric properties of this technique. This is integral for understanding the usefulness of SpecParam as a tool to determine differences in measurements of cognitive function, and electroencephalography activity. We used intraclass correlation coefficients to examine the test-retest reliability of parameterized activity across three sessions (90 minutes apart and 30 days later) in 49 healthy young adults at rest with eyes open, eyes closed, and during three eyes closed cognitive tasks including subtraction (Math), music recall (Music), and episodic memory (Memory). Intraclass correlation coefficients were good for the aperiodic exponent and offset (intraclass correlation coefficients &gt; 0.70) and parameterized periodic activity (intraclass correlation coefficients &gt; 0.66 for alpha and beta power, central frequency, and bandwidth) across conditions. Across all three sessions, SpecParam performed poorly in eyes open (40% of participants had poor fits over non-central sites) and had poor test-retest reliability for parameterized periodic activity. SpecParam mostly provides reliable metrics of individual differences in parameterized neural activity. More work is needed to understand the suitability of eyes open resting data for parameterization using SpecParam.</p

    Individual and population-level responses to ocean acidification

    Get PDF
    Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories

    Fibronectin Matrix Assembly Suppresses Dispersal of Glioblastoma Cells

    Get PDF
    Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12–15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5ÎČ1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal

    Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

    Full text link
    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure

    Prototype Testing Results of Charged Particle Detectors and Critical Subsystems for the ESRA Mission to GTO

    Get PDF
    The Experiment for Space Radiation Analysis (ESRA) is the latest of a series of Demonstration and Validation (DemVal) missions built by the Los Alamos National Laboratory, with the focus on testing a new generation of plasma and energetic paritcle sensors along with critical subsystems. The primary motivation for the ESRA payloads is to minimize size, weight, power, and cost while still providing necessary mission data. These new instruments will be demonstrated by ESRA through ground-based testing and on-orbit operations to increase their technology readiness level such that they can support the evolution of technology and mission objectives. This project will leverage a commercial off-the-shelf CubeSat avionics bus and commercial satellite ground networks to reduce the cost and timeline associated with traditional DemVal missions. The system will launch as a ride share with the DoD Space Test Program to be inserted in Geosynchronous Transfer Orbit (GTO) and allow observations of the Earth\u27s radiation belts. The ESRA CubeSat consists of two science payloads and several subsystems: the Wide field-of-view Plasma Spectrometer, the Energetic Charged Particle telescope, high voltage power supply, payload processor, flight software architecture, and distributed processor module. The ESRA CubeSat will provide measurements of the plasma and energetic charged particle populations in the GTO environment for ions ranging from ~100 eV to ~1000 MeV and electrons with energy ranging from 100 keV to 20 MeV. ESRA will utilize a commercial 12U bus and demonstrate a low-cost, rapidly deployable spaceflight platform with sufficient SWAP to enable efficient measurements of the charged particle populations in the dynamic radiation belts
    • 

    corecore