4,341 research outputs found

    Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors

    Get PDF
    We give a quantitative analysis of the previously published nuclear magnetic resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer salts by using the phenomenological spin fluctuation model of Moriya, and Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the model gives a good quantitative description of the data in the metallic phases of several k-(ET)2X materials. These materials display antiferromagnetic correlation lengths which increase with decreasing temperature and grow to several lattice constants by T_nmr. It is shown that the fact that the dimensionless Korringa ratio is much larger than unity is inconsistent with a broad class of theoretical models (such as dynamical mean-field theory) which neglects spatial correlations and/or vertex corrections. For materials close to the Mott insulating phase the nuclear spin relaxation rate, the Knight shift and the Korringa ratio all decrease significantly with decreasing temperature below T_nmr. This cannot be described by the M-MMP model and the most natural explanation is that a pseudogap, similar to that observed in the underdoped cuprate superconductors, opens up in the density of states below T_nmr. Such a pseudogap has recently been predicted to occur in the dimerised organic charge transfer salts materials by the resonating valence bond (RVB) theory. We propose specific new experiments on organic superconductors to elucidate these issues. For example, measurements to see if high magnetic fields or high pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.

    Sensitivity of the interlayer magnetoresistance of layered metals to intralayer anisotropies

    Get PDF
    Many of the most interesting and technologically important electronic materials discovered in the past two decades have two common features: a layered crystal structure and strong interactions between electrons. Two of the most fundamental questions about such layered metals concern the origin of intralayer anisotropies and the coherence of interlayer charge transport. We show that angle dependent magnetoresistance oscillations (AMRO) are sensitive to anisotropies around an intralayer Fermi surface. Hence, AMRO can be a probe of intralayer anisotropies that is complementary to angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). However, AMRO are not very sensitive to the coherence of the interlayer transport. We illustrate this with comparisons to recent AMRO experiments on an overdoped cuprate.Comment: 7 pages, 3 figure

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Modeling Bell's Non-resonant Cosmic Ray Instability

    Full text link
    We have studied the non-resonant streaming instability of charged energetic particles moving through a background plasma, discovered by Bell (2004). We confirm his numerical results regarding a significant magnetic field amplification in the system. A detailed physical picture of the instability development and of the magnetic field evolution is given.Comment: 12 pages, 4 figures, accepted to Ap

    Ginzburg-Landau theory of phase transitions in quasi-one-dimensional systems

    Get PDF
    A wide range of quasi-one-dimensional materials, consisting of weakly coupled chains, undergo three-dimensional phase transitions that can be described by a complex order parameter. A Ginzburg-Landau theory is derived for such a transition. It is shown that intrachain fluctuations in the order parameter play a crucial role and must be treated exactly. The effect of these fluctuations is determined by a single dimensionless parameter. The three-dimensional transition temperature, the associated specific heat jump, coherence lengths, and width of the critical region, are computed assuming that the single chain Ginzburg-Landau coefficients are independent of temperature. The width of the critical region, estimated from the Ginzburg criterion, is virtually parameter independent, being about 5-8 per cent of the transition temperature. To appear in {\it Physical Review B,} March 1, 1995.Comment: 15 pages, RevTeX, 5 figures in uuencoded compressed tar file

    Quantum Transition State Theory for proton transfer reactions in enzymes

    Full text link
    We consider the role of quantum effects in the transfer of hyrogen-like species in enzyme-catalysed reactions. This study is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects imply that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We use a path integral approach which provides a general framework to understand tunneling in a quantum system which interacts with an environment at non-zero temperature. Here the quantum system is the active site of the enzyme and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0T_0 which is determined by the curvature of potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. For physically reasonable parameters quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of kinetic isotope effects for two classes of enzymes which have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction due to the environment is weak and only slightly modifies the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental degrees of freedom with frequencies much less than 1000 cm1^{-1} do not have a significant effect on quantum corrections to the reaction rate.Comment: Aspects of the article are discussed at condensedconcepts.blogspot.co

    Exact solution, scaling behaviour and quantum dynamics of a model of an atom-molecule Bose-Einstein condensate

    Full text link
    We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.Comment: 5 pages, 4 figure

    Exact Numerical Calculation of the Density of States of the Fluctuating Gap Model

    Full text link
    We develop a powerful numerical algorithm for calculating the density of states rho(omega) of the fluctuating gap model, which describes the low-energy physics of disordered Peierls and spin-Peierls chains. We obtain rho(omega) with unprecedented accuracy from the solution of a simple initial value problem for a single Riccati equation. Generating Gaussian disorder with large correlation length xi by means of a simple Markov process, we present a quantitative study of the behavior of rho (omega) in the pseudogap regime. In particular, we show that in the commensurate case and in the absence of forward scattering the pseudogap is overshadowed by a Dyson singularity below a certain energy scale omega^{ast}, which we explicitly calculate as a function of xi.Comment: 4 revtex pages, 3 figure

    Ab Initio Molecular Dynamics on the Electronic Boltzmann Equilibrium Distribution

    Get PDF
    We prove that for a combined system of classical and quantum particles, it is possible to write a dynamics for the classical particles that incorporates in a natural way the Boltzmann equilibrium population for the quantum subsystem. In addition, these molecular dynamics do not need to assume that the electrons immediately follow the nuclear motion (in contrast to any adiabatic approach), and do not present problems in the presence of crossing points between different potential energy surfaces (conical intersections or spin-crossings). A practical application of this molecular dynamics to study the effect of temperature in molecular systems presenting (nearly) degenerate states - such as the avoided crossing in the ring-closure process of ozone - is presented.Comment: published in New J. Phy
    corecore