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Many of the most interesting and technologically important electronic materials discovered in the past two
decades have both a layered crystal structure and strong interactions between electrons. Two fundamental
questions about such layered metals concern the origin of intralayer anisotropies and the coherence of inter-
layer charge transport. We show that angle dependent magnetoresistance oscillations (AMROs) are sensitive to
anisotropies around an intralayer Fermi surface and can hence be a complementary probe of such anisotropies
to angle-resolved photoemission spectroscopy and scanning tunneling microscopy. However, AMROSs are not
very sensitive to the coherence of the interlayer transport which has implications for recent AMRO experiments

on an overdoped cuprate.
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I. INTRODUCTION

For elemental metals, such as tin and sodium, it is well
established that a Fermi liquid description is valid. Thus, the
Bloch wave vector is a good quantum number for electronic
excitations and there is a well-defined three-dimensional
Fermi surface (FS).! Any variation of properties over the FS
is of secondary interest. In contrast, many layered metals
(e.g., cuprates and layered manganites) are distinctly differ-
ent. Their properties cannot be described in terms of a Fermi
liquid picture.”> Even when one sees signatures of an intra-
layer FS, suggesting quantum coherence of excitations
within individual layers, there is controversy over what
length and time scales the electronic excitations are coherent
between layers.’ Furthermore, in the cuprates, properties
such as the pseudogap, the quasiparticle spectral weight, and
scattering rate vary significantly over the intralayer FS.?
These variations, also seen in angle-resolved photoemission
spectroscopy (ARPES)* and scanning tunneling microscopy,’
may be key to understanding the origin of the superconduc-
tivity and the unusual properties of the metallic and
pseudogap phases.? Significant anisotropies in quasiparticle
weight were also seen recently in layered manganites.® We
show here how the dependence of the interlayer magnetore-
sistance on the magnetic field orientation is quite sensitive to
intralayer anisotropies.

Angle dependent magnetoresistance oscillations. The de-
pendence of the interlayer magnetoresistance on the mag-
netic field direction has been used to map out a three-
dimensional (3D) FS in a chemically diverse range of
layered metals, including organic charge transfer salts,’®
ruthenates,”'” semiconductor heterostructures,'' tungsten
bronzes,'? intercalated graphite,' and an overdoped thallium
cuprate.'*!5 However, most of the observed angle dependent
magnetoresistance oscillations (AMROs) are also consistent
with a two-dimensional FS, i.e., a FS existing only within the
individual layers and weakly incoherent interlayer
transport.'® Hence, it is difficult to experimentally distin-
guish the two physically distinct pictures summarized in Fig.
1.1 AMROs are essentially a geometric resonance involving
the cyclotron orbits projected onto the plane parallel to
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the layers.'” In this sense, they are similar to geometric
commensurability oscillations in magnetoresistance seen
for two-dimensional electron gases in semiconductor
heterostructures. 32

In this paper, we present the following results for inter-
layer magnetotransport in a layered Fermi liquid metal. (i)
We give a general expression for the interlayer conductivity
in a tilted magnetic field including the effects of anisotropy
around the FS of the Fermi wave vector, Fermi velocity,
scattering rate, quasiparticle weight, and interlayer hopping
integral. (ii) We derive (i) for both coherent interlayer trans-
port (a three-dimensional FS) and for weakly incoherent in-
terlayer transport (where the FS is only well defined within
the layers) (see Fig. 1). Furthermore, we elucidate the phys-
ics behind why the same result is obtained for both types of
interlayer transport.?! (iii) Our results show that a three-
dimensional FS is not necessary to give a quantitative de-
scription of AMRO experiments on an overdoped cuprate.'*
The data can be reproduced by the weakly incoherent model.
Others have considered the effect on AMRO of various spe-
cific anisotropies and specific field directions,”!%>23 but not
the general case considered here.

The paper is structured as follows. In Sec. II, we intro-
duce the anisotropies in FS properties that we consider and
state our main result [Eq. (9)] for interlayer conductivity in
the presence of these anisotropies. In Sec. III, we discuss the
derivation of our main result for the interlayer conductivity
for both coherent and weakly incoherent interlayer transport.
In Sec. IV, we explore the implications of these results for
AMRO experiments on thallium cuprate.'* Finally, in Sec. V,
we conclude and give a discussion of our results.

II. ANISOTROPIES IN THE FERMI SURFACE
AND TRANSPORT

There are a number of FS properties that can be aniso-
tropic in layered metals. We discuss intralayer anisotropy in
the Fermi surface, dispersion and in-plane scattering, and
anisotropy in the interlayer hopping. All these anisotropies
have been considered in earlier works, but not simulta-
neously, which is the generic situation.

©2007 The American Physical Society
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FIG. 1. (Color online) Two pictures of interlayer transport. (a)
The Fermi surface (FS) is three dimensional and warped by the
quantum coherence of electron transport between layers and the
variation of the interlayer hopping with the intralayer wave vector
(Refs. 10 and 14). (b) The FS is only well defined within individual
layers. The interlayer transport is weakly incoherent, i.e., momen-
tum parallel to the layers is conserved but coherence is only be-
tween neighboring layers. The thickness of the line is proportional
to the magnitude of the interlayer hopping.

We will consider the interlayer conductivity in a tilted
magnetic field,

B = B(sin 6 cos ¢,sin 6 sin ¢,cos 6), (1)

which is at an angle 6 to the ¢ axis and makes an azimuthal
angle ¢ to the a axis in the ab plane (see the inset of Fig. 2).

A. Intralayer anisotropies

We use the angle ¢ to parametrize the intralayer FS de-
fined by

k() = kp(p)(sin ¢,cos ¢). (2)

For an anisotropic in-plane dispersion, ep(k,,k,), the
Fermi wave vector Ky, which maps out a surface (strictly
speaking, a curve) of constant energy surface, is defined by
é&p(kp(p))=Ey, where E is the Fermi energy. The Fermi
velocity is defined by
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FIG. 2. (Color online) Calculated angular dependence of the
interlayer resistance for several different azimuthal angles. The pa-
rameters are chosen (see Sec. IV for precise parametrization) so that
the calculated curves agree essentially perfectly with the measured
curves for the overdoped cuprate T12201 (Ref. 14). The inset shows
the direction of the magnetic field relative to the layers of the
crystal.

1 oJe

vi(p) = PR (3)
k:kF

and is always normal to the Fermi surface. Hence, if there is
intralayer anisotropy in the dispersion relation, there must
also be anisotropy in both the Fermi surface and the Fermi
velocity.

Cyclotron frequency. The semiclassical equations of
motion! for an electron moving on the intralayer FS in a
magnetic field with component B cos € perpendicular to the
layers can be solved given the variation of the angular speed
due to cyclotron motion around the intralayer FS as

ke(¢) - vi(d)
hkp(¢)®

where vi(¢) is the Fermi velocity. For a circular FS, wg(¢)
has a constant value, w, cos 6, with w.=eB/ m” the cyclotron
frequency. However, for an anisotropic FS, k; and v are not
parallel and wy(¢) will vary around the FS.

Scattering rate. The variation of the transport lifetime
over the FS is given by 7(¢). The probability of an electron
not being scattered in moving between two points on the
intralayer FS, defined by angles ¢, and ¢, is

) di
G(¢2,¢1)—GXP(— f¢1 wo(lﬂ)f(llf)). (5)

In what follows, an important quantity is P=G(2,0), the
probability that an electron makes a complete orbit of the
intralayer FS without being scattered.

Interlayer hopping. The Hamiltonian for hopping between
the layers is

wo(p) =eB cos 0 (4)

Hy=21,(r- rj)[cjcjeiq)ij + c;cie_i¢ij], (6)
ij

where ®;;=(ec/h)[A (r)—A,(r)] is the Aharonov-Bohm
(AB) phase acquired by an electron hopping between r; in
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one layer and r; in the other layer,!” with layer separation ¢
and A”=Az(r)i=%(B” Xr) the vector potential for the mag-
netic field parallel to the layers, B;. Momentum anisotropy in
t, is present in the Fourier transform of the hopping matrix
element ¢, (r;—r;) via

h(¢)=Jd2r exp(ikp(¢) - 1)z, (r). (7

In momentum space, the difference in AB phases acquired in
hopping between layers for positions ¢, and ¢, on the FS is

D(py, b)) = ¢ tan Okp(py)cos(p) — @) — kp(da)cos(dy — @) ].
(8)

We will also see that for a coherent three-dimensional FS,
this quantity can be related to the Bloch wave vector perpen-
dicular to the layers [see Eq. (15) below].

B. Main result

We now state the result central to this paper. The inter-
layer conductivity o, in a tilted magnetic field [Eq. (1)] at
zero temperature is

seeBcos 0 [°™ dp, [P de,
(1-P) Jy wo(er) ¢2_27TU)0(¢’1)

Xt ()t (py)cos(P(dy, ) G(da, dy), (9)

where s,=(e’c/ mh*). The factor 1/(1—-P) in the conductiv-
ity comes from noting the 27 periodicity of the integrand
and reducing the integration region for ¢;. The factor
eB cos 6/ wy(¢,) can also be interpreted as anisotropy in the
density of states.?®> Equation (9) does not explicitly take into
account possible anisotropy in the quasiparticle weight Z( )
due to many-body effects. The hopping matrix elements
t,(¢p) should be understood as ¢ L((;b):Z(gb)t(i(d)), where
#(¢) is the bare hopping. It should be stressed that Eq. (9)
depends only on intralayer FS properties and holds irrespec-
tive of the particular form of those anisotropies.

In Sec. III, we give the derivation of this result both for
coherent transport perpendicular to the layers and for weakly
incoherent interlayer hopping (see Fig. 1), provided ¢, <Ep.
Below, in Fig. 2 we show the calculated AMRO for param-
eters that fit the experimental data for the overdoped thallium
cuprate in Ref. 14. The fitting procedure in Ref. 14 allowed
for anisotropy in the FS, but not in the Fermi velocity [i.e., in
()] or in the intralayer scattering. Allowing for both of
these factors, we find a very high quality, quantitative fit to
the data, which for clarity of presentation is not shown since
it lies virtually on top of our calculated magnetoresistance.

O-c( 0, (P) =

C. Mapping out Fermi surface anisotropies
at high magnetic fields

We now consider AMRO in high magnetic fields (w7
> 1), since such experiments have previously been used to
map out the FS for very clean organic materials.”®>* When
ckrtan 6> 1 and cvy7yeB/h>> 1, the method of steepest de-
scents may be used to evaluate the integrals in Eq. (9).2° The

PHYSICAL REVIEW B 76, 054515 (2007)

integrals are dominated by the angles near ¢, which is where
the Fermi wave vector kp(¢) has the maximum projection
along the direction of the intralayer magnetic field, b
=(cos @,sin ¢). ¢, is a ¢ dependent quantity and is found
from the solution of

J
Zﬁ[b”(@) ‘kp(¢)]=0.

This leads to
2msy ti(¢p)’>  eBcos
(1= P) [wy(py)* |(ebp)|c tan 6

X[1+ 2P sin(2c tan by(¢) - kp(¢hy))],
(10)

o.(6,¢) =

where M(q&):%&[b”hp)-kF(d))]. This expression shows that
the interlayer magnetoresistance oscillates as a function of
the field tilt angle, and for a fixed value of ¢ the magnetore-
sistance will be a maximum when the field is at angles 6,

given by’?42
by(¢) - kp(o)c tan 6, = m(n - 1/4), (11)
where n=1,2,.... This expression has been used to map out

the intralayer FS for a wide range of metallic organic charge
transfer salts.”?* We point out that our expression (10) will
also be sensitive to angular variations in the interlayer hop-
ping and cyclotron frequency. Interestingly, when wqy7y> 1,
there is no ¢, dependence from the angular variation in the
scattering rate since the only dependence on the scattering
rate is through the quantity P, which involves an average
over the FS. Hence, the FS shape may be determined inde-
pendent of scattering, which can then be used to determine
the anisotropy in scattering at smaller fields.?®

III. DERIVATIONS FOR COHERENT AND INCOHERENT
INTERLAYER TRANSPORT

We now sketch the derivation of Eq. (9) for the cases of
coherent and weakly incoherent interlayer transport.

A. Coherent interlayer transport

If t, >#/7, then there is a well-defined Bloch wave vec-
tor perpendicular to the layers, k,, and the three-dimensional
dispersion is

Ep = Explkyky) = 265 (ko ky)cos(ck,). (12)

To obtain Eq. (9) within a picture of coherent interlayer
transport, one starts from the dispersion, which can be used
to determine the Fermi velocity, and semiclassical equations
of motion for motion on the FS. Solution of the appropriate
Boltzmann equation, to leading order in (¢, /Ef)?, leads to
Eq. (9) as a generalization of the Shockley-Chamber (SC)
formula.'?

A useful relation between the projection of the motion in
real space onto the plane of the layers and c-axis momentum
(where R is the position in the plane) comes from consider-
ing the equation of motion (we neglect higher order terms in

054515-3



MALCOLM P. KENNETT AND ROSS H. MCKENZIE

t,/Ep). Integrating to get in-plane and c-axis momentum
gives

||(l) k”(O) + [R‘|(t) R” 0)] X Z (13)
B, - [ky(®) ~ky(0)]

B, (14)

k(1) = k.(0) +

Hence, the interlayer velocity is

2c1 ()
h

v.(p) = sin(ck.(0) + ckp(p)tan O cos(p— ¢)).

(15)

The SC formula! involves correlations in this velocity at dif-
ferent times (equivalently different ¢),

2 4
o= 48—773 dSklv (k1)(_ O;;iz) f_w do, Uz(((izz)) Gl 1),

(16)

where G(¢,, ;) was defined in Eq. (5), f is the Fermi-
Dirac distribution, and the limits of integration for k, are
between =”. The expressions in Eqgs. (13)—(15) [when the
integral over k. is performed in Eq. (16)] allow one to see
how the term associated with an Aharonov-Bohm phase for
weakly incoherent transport [see Eq. (8)] arises for coherent
interlayer transport.'’

B. Weakly incoherent interlayer transport

The interlayer current at r, from layer 2 is®®

ji(r|)=i@Jdzrzh(rl—1’2)[0;(1'2)01(1'1)6@'2—H-C-],

where @, is the gauge phase for hopping between the lay-
ers. Note that 7, (r,,r,) contains the variation of the inter-
layer hopping over the FS [Eq. (7)].

In linear response, the Kubo formula for the interlayer
conductivity at zero temperature is'68

2 2
o.= ﬁLCXeLy Re{fdzrlfdszd2r3fd2r4ti(r1,r4)

Xtl(r33rZ)ei(¢l2_¢34)KEF(rlsr2,r3’r4):| s (17)

where? K (r,r),r;,r)=G5 (r;,r))G} (r;,1,) and Gf_ is
the retarded one-electron Green’s function within layer 1.
Now, K, oscillates rapidly as a function of the spatial coor-
dinates, with a period comparable to the Fermi wavelength.
We can separate the nonoscillatory part by introducing coor-
dinates R1=%(r1+r4) and R2=%(r2+r3) and write

dk, [ d’k,
Ke(r17r2’r3’r4) = (277)2 (271_)2

Xeikl-(rl—r4)+ik2~(r3—r2). (18)

Ke(kl’Rl ;k2,R2)

We use a semiclassical approximation since K, will be
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sharply peaked at energies around the Fermi energy, which
enforces the condition that the magnitude of the momentum
in the Fourier transform is ¢ dependent and lies on the FS
and then K (kz(¢;),R;;kp(¢h,),R,) satisfies the Boltzmann-

type equation for a diffuson:>
VF(¢2) + w0(¢2) b b K, (¢1.R1;¢.R,)
- 2wmﬂ¢l ~ $,) (R, - Ry),
eB cos 0

where the factor of w, on the right hand side of the equation
comes from noting that the Boltzmann equation is initially
stated with &*(k,—k,) on the right hand side. We can solve
this equation for K by Fourier transforming to get a solution
in terms of

d*q aR
K(¢1.R:2.q) = 'K (1, R 502,Ry), (19)

m)?
and then
) - w
K($1.Ry: ) = 2779 f 155919 (@)

- wy(P) eBcos b
¢ dy

Xex"{ L,z wo(l//)T(l/f)}

Xexp{iQ'f FEi;dlp:| (20)

where we can note that

& _
L)z Z)FOEZ)) dp=R|(¢d) —R(¢,).

Inserting this solution into Eq. (17), using Eq. (13), and in-
tegrating over R, and R, forces

D =D, - D3, =c tan O(kp(p,)cos( ¢, —
Xcos(¢; - ¢)).

So, we get as our final result

2ce? R f d¢j¢2d¢de de eB cos 6
.=—Re
O ﬁny 2 1 1 2(00((1)1
eB cos 0

——— 1, (d)t (Pr)cos| PIK (bR 2. Ry),
wy(,)
(21)

@) = k()

which is identical to the equation found with the Boltzmann
equation for coherent transport in Eq. (9) after using period-
icity of the integrand to reduce the interval of integration
over ¢, to have length 2.

IV. AMRO IN THALLIUM CUPRATES

In Secs. II and III, we established Eq. (9) for general
forms of anisotropy and interlayer transport mechanisms. To
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FIG. 3. (Color online) Calculated angular dependence of the
interlayer magnetoresistance for several different azimuthal angles,
based on Eq. (9). The parameter values used were 7,=0.675, t‘i
=13 meV, ckOF=8.64, and wyy79=0.45. In (a), @=0.0, k=0.0, and
1=0.0, as defined in Egs. (22)-(25). In (b), we allow anisotropy in
kp, with k=-0.033. In (c), we allow anisotropy in kp and w, with
k=-0.033 and u=-0.08.

illustrate the use of Eq. (9) and its significance, we fit recent
AMRO measurements of a thallium cuprate.'*!'> An impor-
tant point to note about these experiments is that the data are
of very high quality and it is thus possible to fit AMRO to
very high precision, which leads to extraction of FS param-
eters to high accuracy.

Numerical evaluation of Eq. (9) shows that changing the
functional forms of the anisotropy in interlayer hopping and
intralayer scattering leads to quantitative variations in the
AMRO. This can be seen in Figs. 3(a)-3(c) as we add in
anisotropies to our fitting of AMRO. To extract deviations of
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the FS from circularity in a self-consistent manner from
AMRO experiments, one must also take into account the
related anisotropy in the Fermi velocity and the resulting
anisotropy in the angular speed [see Eq. (4)]. In previous
work, %1% such effects were not included in the expressions
used for fitting experimental data. This omission quantita-
tively changes the magnitude of anisotropies in kj extracted
from the fits. Similarly, a self-consistent determination of
anisotropy in 7(¢) also requires including anisotropy in

wo(¢h).

Model forms for anisotropy in thallium cuprates

We use a form of ¢, (¢) which is consistent with the body-
centered-tetragonal crystal structure of thallium cuprate and
band structure calculations:'*3°

t.(¢)=1,[sin(2) + 7, sin(6¢) + 7, sin(10¢)], (22)

parametrized by 7; and 7,. The crystal symmetry requires
that'® ¢, (¢p)=—t,(p+m/2), implying 7,=1+17,, and that
t,(¢) has eightfold symmetry and vanishes at ¢="7, n
=0,1,...,7.

A number of experiments on the cuprates suggest that the
scattering rate has a fourfold variation around the Fermi sur-
face. Such variations are also seen in calculations for a doped
Hubbard model, using cellular dynamical mean-field
theory.?! A simple hot or cold spot model of scattering3>33
yields

1 1
T(_(ﬁ) = :0[1 + acos(49)], (23)

where a>0 for cold spots located at ¢p==+7, t%w. We pa-
rametrize the anisotropy in the FS and the cyclotron fre-

quency as

kp(p) = k1 + k cos(4¢)], (24)
L L ucosag) (25)
woo(d) = woo[ +u cos(49)].

In Fig. 3, we show the effects of adding various anisotro-
pies to the calculated AMRO. In Fig. 3(a), we show the
calculated AMRO only allowing for anisotropic interlayer
hopping. This demonstrates that much of the overall form of
the magnetoresistance curves is determined by the presence
of the eight nodes in the interlayer hopping [Eq. (22)]. Due
to this symmetry, we only display AMRO for ¢ [0,1—7]. In
Fig. 3(b), we add the effects of an anisotropic kz which can
be seen to depress p.(6) for small ¢ at large 6 and enhance
p(6) for larger ¢ (up to ) at large 6. In Fig. 3(c), we make
our fit self-consistent by also allowing for anisotropy in w,
which tends to reduce p.(6) at larger 6 for larger ¢. When we
also include scattering anisotropy, we recover the fit that we
displayed in Fig. 2 for the following set of parameters: 7,
=0.675, £ =13 meV, ck=8.64, wyy7y=0.45,k=—0.033,u
=-0.08, and a=0.01.

The effect of anisotropic scattering on the shape of the
curves is most pronounced at large values of € and on the
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height of the peak in p.(6) at 6~40°, for ¢~0°. We use a
small value of « here to fit the data, but larger values tend to
be required at higher temperatures.' Increasing « also in-
creases the value of p(6=0)=p,.

For the overdoped cuprate we consider, a tight-binding
model for the intralayer bands has been fitted to ARPES data
for a sample of similar chemical composition.>* We use this
model as an independent check of the reliability of the values
we obtain for k?p, wy, U, and k. The tight-binding fit gives
comparable values, which increases confidence that the ex-
traction of anisotropies from AMRO is robust.

Equation (9) is valid for both coherent and weakly inco-
herent transport between layers, except in a small region near
6=90°. For coherent transport, but not for incoherent trans-
port, there is a peak in the resistivity at §=90° due to orbits
on the 3D FS that do not exist if one can only define a
two-dimensional (2D) FS within the layers.”!® A second de-
finitive signature of coherent interlayer transport is beats in
quantum magnetic oscillations,'¢ but these have not been
seen in thallium cuprate. For the samples in Ref. 14, ¢, and
fl 7, are of the same order, which would place them at the
boundary between coherent and incoherent interlayer trans-
port. However, w7, is insufficiently large to be able to see
either of these definitive signatures of coherence. This im-
plies that further evidence is required to validate the claim of
a 3D FS in Ref. 14, and so a 3D FS is not necessary to
explain the AMRO data in Ref. 14.

V. DISCUSSION

In conclusion, we have given a general formula for
AMRO in layered metals which have anisotropy in interlayer

PHYSICAL REVIEW B 76, 054515 (2007)

tunneling and in intralayer scattering and an anisotropic FS.
We have performed explicit calculations for parameters
relevant to experiments on thallium cuprate'® and have
shown that these do not, on their own, imply the coherence
of interlayer transport. These fits are very sensitive to the
anisotropies of intralayer properties.

While we have focused our attention on the example of
AMRO in thallium cuprate, our results have a much wider
applicability, in fact, to any layered metal with an anisotropic
Fermi surface and anisotropic scattering. Our results have
been stated for quasi-two-dimensional systems, but it should
be fairly straightforward to generalize our results to quasi-
one-dimensional systems such as Bechgaard salts, for which
there is a substantial amount of AMRO data.”® We also dis-
cuss how AMRO can be used in conjunction with other tech-
niques such as ARPES to place strong constraints on FS
properties. Combined AMRO and ARPES studies of layered
metals could give a strong consistency check for the results
of both techniques and this suggests many future opportuni-
ties ahead for AMRO as a powerful probe of anisotropies in
layered metals. In particular, for superconducting organic
charge transfer salts, a characterization of intralayer anisotro-
pies could reveal the presence of a pseudogap with d-wave
symmetry, as predicted by a resonating valence bond theory
of these materials.®
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