5,434 research outputs found

    Quality of life and building design in residential and nursing homes for older people

    Get PDF
    Older people living in residential and nursing care homes spend a large proportion of their time within the boundaries of the home, and may depend on the environment to compensate for their physical or cognitive frailties. Regulations and guidelines on the design of care buildings have accumulated over time with little knowledge of their impact on the quality of life of building users. The Design in Caring Environments Study (DICE) collected cross-sectional data on building design and quality of life in 38 care homes in and near Sheffield, Yorkshire. Quality of life was assessed using methods which included all residents regardless of their frailty, and staff morale was also assessed. The physical environment was measured on 11 user-related domains using a new tool, the Sheffield Care Environment Assessment Matrix (SCEAM). Significant positive associations were found between several aspects of the built environment and the residents' quality of life. There was evidence that a focus on safety and health requirements could be creating risk-averse environments which act against quality of life, particularly for the least frail residents. Staff morale was associated with attributes of a non-institutional environment for residents rather than with the facilities provided for the staff. The new tool for assessing building design has potential applications in further research and for care providers

    Far-infrared rotational emission by carbon monoxide

    Get PDF
    Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward

    The Direct Sensing of Damage to Ion Implanted Materials

    Get PDF
    Material damage caused by the implantation of a high concentration of hydrogenic ions requires regular remote monitoring in order to study the atomic and nuclear reaction processes taking place within each sample. Real time continuous measurements of acoustic emission, X-ray production and emitted particle flux enable processes such as bubble or crack formation, changes in crystalline order, and nuclear fusion reactions can be studied in detail through examination of secondary or associated emission products. Fracturing of a material may generate a unique signature which, when taken in conjunction with time-averaged quantities such as changes in resistivity, surface strain, and induced radioactivity, enable an overall picture of the onset and nature of crack formation to be acquired. The overall usefulness of the remote sensing of damage processes and nuclear reactions is discussed. Surface studies involving inelastic Raman scattering and atomic force spectroscopy can contribute substantially to the overall picture, and identify clustering and cluster processes

    Effect of Diet on Metabolism of Laboratory Rats

    Get PDF
    In previous studies when rats were fed a processed, semipurified, extruded rodent food bar (RFB) developed for space science research, we noted a difference in the appearance of gastrointestinal tissue (GI); therefore the following study evaluated GI characteristics and growth and metabolic rates of rats fed chow (C) or RFB. Two hundred and twenty-four rats (78 g mean body weight) were randomly assigned to 28 cages and provided C or RFB. Each cage was considered the experimental unit and a 95 percent level of significance, indicated by ANOVA, was used for inference. After each 30-, 60-, and 90-day period, eight cages were shifted from the C to RFB diet and housing density was reduced by two rats per cage. The two rats removed from each cage were sacrificed and used for GI evaluation. Metabolic rates of the rats in each cage were determined by indirect calorimetry. No differences in body weight were detected at 0, 30, 60 or 90 days between C and RFB. Heat production (kcal/hr/kg), CO2 production (L/hr/kg) and O2 consumption (L/hr/kg) were different by light:dark and age with no effect of diet. Respiratory quotient was different by age with no effect of light:dark or diet. Rats on the C diet ate less food and drank more water than those on RFB. C rats produced more fecal and waste materials than the RFB. GI lengths increased with age but were less in RFB than C. GI full and empty weights increased with age but weighed less in RFB than C. Gut-associated lymphoid tissue (GALT) numbers increased with age with no effect of diet. No differences in ileum-associated GALT area were detected between C and RFB. Switching C to RFB decreased GI length, GI full and empty weights, with no changes in GALT number or area. We concluded RFB decreased GI mass without affecting metabolic rate or general body growth

    Measurement of electron screening in muonic lead

    Get PDF
    Energies of the transitions between high-lying (n≥6) states of muonic lead were accurately determined. The results are interpreted as a ∼2% test of the electron screening. The agreement between experiment and theory is good if it is assumed that the refilling of the electron K shell is fast. The present results furthermore severely restrict possible ionization of the electron L shell

    New Measurement of the Cosmic-Ray Positron Fraction from 5 to 15 GeV

    Get PDF
    We present a new measurement of the cosmic-ray positron fraction at energies between 5 and 15 GeV with the balloon-borne HEAT-pbar instrument in the spring of 2000. The data presented here are compatible with our previous measurements, obtained with a different instrument. The combined data from the three HEAT flights indicate a small positron flux of non-standard origin above 5 GeV. We compare the new measurement with earlier data obtained with the HEAT-e+- instrument, during the opposite epoch of the solar cycle, and conclude that our measurements do not support predictions of charge sign dependent solar modulation of the positron abundance at 5 GeV.Comment: accepted for publication in PR

    Scattering variability detected from the circumsource medium of FRB 20190520B

    Get PDF
    Fast radio bursts (FRBs) are millisecond-timescale radio transients, the origins of which are predominantly extragalactic and likely involve highly magnetized compact objects. FRBs undergo multipath propagation, or scattering, from electron density fluctuations on sub-parsec scales in ionized gas along the line-of-sight. Scattering observations have located plasma structures within FRB host galaxies, probed Galactic and extragalactic turbulence, and constrained FRB redshifts. Scattering also inhibits FRB detection and biases the observed FRB population. We report the detection of scattering times from the repeating FRB 20190520B that vary by up to a factor of two or more on minutes to days-long timescales. In one notable case, the scattering time varied from 7.9±0.47.9\pm0.4 ms to less than 3.1 ms (95%95\% confidence) over 2.9 minutes at 1.45 GHz. The scattering times appear to be uncorrelated between bursts or with dispersion and rotation measure variations. Scattering variations are attributable to dynamic, inhomogeneous plasma in the circumsource medium, and analogous variations have been observed from the Crab pulsar. Under such circumstances, the frequency dependence of scattering can deviate from the typical power-law used to measure scattering. Similar variations may therefore be detectable from other FRBs, even those with inconspicuous scattering, providing a unique probe of small-scale processes within FRB environments.Comment: 10 pages, 9 figures, accepted to MNRA

    The beamformer and correlator for the Large European Array for Pulsars

    Get PDF
    The Large European Array for Pulsars combines Europe's largest radio telescopes to form a tied-array telescope that provides high signal-to-noise observations of millisecond pulsars (MSPs) with the objective to increase the sensitivity of detecting low-frequency gravitational waves. As part of this endeavor we have developed a software correlator and beamformer which enables the formation of a tied-array beam from the raw voltages from each of telescopes. We explain the concepts and techniques involved in the process of adding the raw voltages coherently. We further present the software processing pipeline that is specifically designed to deal with data from widely spaced, inhomogeneous radio telescopes and describe the steps involved in preparing, correlating and creating the tied-array beam. This includes polarization calibration, bandpass correction, frequency dependent phase correction, interference mitigation and pulsar gating. A link is provided where the software can be obtained.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Computin

    Jeans analysis of self-gravitating systems in f(R)-gravity

    Full text link
    Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collisionless Boltzmann and Poisson equations derived from f(R)f(R)-gravity in the weak field approximation. Specifically, we describe a system at equilibrium by a time-independent distribution function f0(x,v)f_0(x,v) and two potentials Φ0(x)\Phi_0(x) and Ψ0(x)\Psi_0(x) solutions of the modified Poisson and collisionless Boltzmann equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems where a generalized Jeans wave-number is obtained. This analysis gives rise to unstable modes not present in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of f(R)=Rf(R)=R). In this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully addressed in the framework of f(R)f(R)-gravity.Comment: 8 pages, 2 figures, Accepted for publication in PR
    • …
    corecore