180 research outputs found

    Constructing a broadly inclusive seed plant phylogeny

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143673/1/ajb21019_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143673/2/ajb21019.pd

    The geometry of the Barbour-Bertotti theories II. The three body problem

    Get PDF
    We present a geometric approach to the three-body problem in the non-relativistic context of the Barbour-Bertotti theories. The Riemannian metric characterizing the dynamics is analyzed in detail in terms of the relative separations. Consequences of a conformal symmetry are exploited and the sectional curvatures of geometrically preferred surfaces are computed. The geodesic motions are integrated. Line configurations, which lead to curvature singularities for N3N\neq 3, are investigated. None of the independent scalars formed from the metric and curvature tensor diverges there.Comment: 16 pages, 2 eps figures, to appear in Classical and Quantum Gravit

    Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor

    Get PDF
    PREMISE OF THE STUDY:Hybridization between diploids and tetraploids can lead to new allopolyploid species, often via a triploid intermediate. Viable triploids are often produced asymmetrically, with greater success observed for “maternal-excess” crosses where the mother has a higher ploidy than the father. Here we investigated the evolutionary origins ofMimulus peregrinus, an allohexaploid recently derived from the triploidM. ×robertsii, to determine whether reproductive asymmetry has shaped the formation of this new species.  METHODS:We used reciprocal crosses between the diploid (M. guttatus) and tetraploid (M. luteus) progenitors to determine the viability of triploidM. ×robertsiihybrids resulting from paternal- vs. maternal-excess crosses. To investigate whether experimental results predict patterns seen in the field, we performed parentage analyses comparing natural populations ofM. peregrinusto its diploid, tetraploid, and triploid progenitors. Organellar sequences obtained from pre-existing genomic data, supplemented with additional genotyping was used to establish the maternal ancestry of multipleM. peregrinusandM. ×robertsiipopulations.  KEY RESULTS:We found strong evidence for asymmetric origins ofM. peregrinus, but opposite to the common pattern, with paternal-excess crosses significantly more successful than maternal-excess crosses. These results successfully predicted hybrid formation in nature: 111 of 114M. ×robertsiiindividuals, and 27 of 27M. peregrinus, had anM. guttatusmaternal haplotype.  CONCLUSION:This study, which includes the firstMimuluschloroplast genome assembly, demonstrates the utility of parentage analysis through genome skimming. We highlight the benefits of complementing genomic analyses with experimental approaches to understand asymmetry in allopolyploid speciation

    Diversity and Community Composition of Methanogenic Archaea in the Rumen of Scottish Upland Sheep Assessed by Different Methods

    Get PDF
    Acknowledgments We thank Bob Mayes and Dave Hamilton of the James Hutton Institute for their permission and help in sampling the sheep digesta. Gillian Campbell and Pauline Young provided an excellent DNA sequencing service. We also thank Dr Matthew McCabe for preparing V6–V8 amplicon libraries. Author Contributions Conceived and designed the experiments: RJW. Performed the experiments: RJW BG NM SMW CJC. Analyzed the data: TJS MW SMW CJC RJW. Contributed reagents/materials/analysis tools: NM RJW MW SMW CJC. Contributed to the writing of the manuscript: TJS MW SMW CJC RJW.Peer reviewedPublisher PD

    Correspondence

    Get PDF
    quantification, real-time PCR, rumen, stearic acid producers

    Randomized Trials of Retosiban Versus Placebo or Atosiban in Spontaneous Preterm Labor.

    Get PDF
    OBJECTIVE:  The aim of this study is to assess the efficacy and safety of retosiban in spontaneous preterm labor (sPTL). STUDY DESIGN:  Two multicenter, randomized, and double-blind trials compared retosiban with placebo and retosiban with atosiban in women with a singleton pregnancy and intact membranes in sPTL at 24 to 336/7 weeks' gestation. Coprimary endpoints in the placebo-controlled trial were time to delivery (TTD) or treatment failure (whichever occurred first) and neonatal composite morbidity and mortality. The primary endpoint of the atosiban comparator trial was TTD. RESULTS:  The trials were terminated early because of slow recruitment. The placebo-controlled trial enrolled 23 participants (February 2016-July 2017; 2.6% of target);the atosiban-comparator trial enrolled 97 (March 2015-August 2017; 29% of target). Baseline participant characteristics were similar between treatments. In the placebo-controlled trial, mean gestational ages at randomization were 30.8 (retosiban, n = 10) and 30.5 weeks (placebo, n = 13), and mean times to delivery/treatment failure were 18.9 days (retosiban) and 11.1 days (placebo). Two and four neonates in the retosiban and placebo groups, respectively, had ≥1 component of the neonatal composite endpoint. In the atosiban-comparator trial, mean gestational age at randomization was 31.5 weeks (for both retosiban, n = 47, and atosiban, n = 50), and adjusted mean TTDs were 32.51 days (retosiban) and 33.71 days (atosiban; p > 0.05). Adverse events were no more common with retosiban than placebo or atosiban. CONCLUSION:  Despite considerable efforts to conduct two adequate and well-controlled studies in patients with sPTL, both studies were unable to recruit effectively and consequently terminated prematurely. Key factors negatively affecting participation were patient and physician resistance to use of a placebo comparator, lack of investigator consensus on diagnostic criteria and acceptance of protocol procedures, and ethics committee decisions. Meaningful cooperation between pharmaceutical companies, regulatory authorities, and the obstetric community is essential for future development of drugs to treat sPTL

    Nature-based Solutions for Climate Change in the UK

    Get PDF
    Nature-based solutions (NbS) address societal problems in ways that benefit both people and nature. The main focus of this report is the joint role of NbS for addressing the climate and biodiversity crises we currently face. Natural habitats act as NbS for climate if they sequester carbon (contributing to Net Zero targets) or provide adaptation to climate change effects (for example, reducing flooding, protecting coastline against sea-level rise or creating cool spaces in cities). As well as these climate benefits, they can enhance biodiversity, create improved and more resilient ecosystem functioning, enhance human wellbeing and provide economic benefits, in terms of monetary value and job creation. Despite the huge range of benefits NbS have, they should be seen as complementary to other climate and conservation actions, not as a replacement to them. NbS have great potential to tackle the two defining crises of our age. The BES report provides examples of opportunities for NbS across a range of habitats, as well as discussion of some of the complexities involved in planning for NbS. The report also outlines a detailed analysis of the tools, financial mechanisms and policies required for effective delivery in a UK context. Policy change will be necessary to overcome some of the challenges associated with NbS and to ensure that they fulfil their potential, yet the rewards are vital in meeting national climate change and biodiversity targets. The Executive Summary provides five key themes which emerge across the report, across the multiple habitats and multiple NbS studied. Six ‘priority’ habitats for NbS are given at the end of the summary. However, we emphasise that all habitats covered in the report can act as NbS and all can play a role in addressing the climate and biodiversity crises

    Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations

    Get PDF
    The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 10^6 cm^(−3)), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss
    corecore