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Abstract

Ruminal archaeomes of two mature sheep grazing in the Scottish uplands were analysed by different sequencing and
analysis methods in order to compare the apparent archaeal communities. All methods revealed that the majority of
methanogens belonged to the Methanobacteriales order containing the Methanobrevibacter, Methanosphaera and
Methanobacteria genera. Sanger sequenced 1.3 kb 16S rRNA gene amplicons identified the main species of
Methanobrevibacter present to be a SGMT Clade member Mbb. millerae ($91% of OTUs); Methanosphaera comprised the
remainder of the OTUs. The primers did not amplify ruminal Thermoplasmatales-related 16S rRNA genes. Illumina
sequenced V6–V8 16S rRNA gene amplicons identified similar Methanobrevibacter spp. and Methanosphaera clades and also
identified the Thermoplasmatales-related order as 13% of total archaea. Unusually, both methods concluded that Mbb.
ruminantium and relatives from the same clade (RO) were almost absent. Sequences mapping to rumen 16S rRNA and mcrA
gene references were extracted from Illumina metagenome data. Mapping of the metagenome data to16S rRNA gene
references produced taxonomic identification to Order level including 2–3% Thermoplasmatales, but was unable to
discriminate to species level. Mapping of the metagenome data to mcrA gene references resolved 69% to unclassified
Methanobacteriales. Only 30% of sequences were assigned to species level clades: of the sequences assigned to
Methanobrevibacter, most mapped to SGMT (16%) and RO (10%) clades. The Sanger 16S amplicon and Illumina
metagenome mcrA analyses showed similar species richness (Chao1 Index 19–35), while Illumina metagenome and
amplicon 16S rRNA analysis gave lower richness estimates (10–18). The values of the Shannon Index were low in all
methods, indicating low richness and uneven species distribution. Thus, although much information may be extracted from
the other methods, Illumina amplicon sequencing of the V6–V8 16S rRNA gene would be the method of choice for studying
rumen archaeal communities.
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Introduction

Methanogenic archaea are part of the anaerobic microbial

community of the rumen. Though less abundant than the ruminal

bacteria they have received a great deal of attention due to their

ability to synthesise methane. Methanogenesis from the rumen can

occur via three known metabolic pathways although the hydro-

genotrophic reduction of CO2 by H2 predominates [1]. The

production of methane by ruminants represents a loss of energy to

the animal [2], and with 3.6 billion domestic ruminants and 1.1

billion sheep globally enteric methane is also believed to be a

significant contributor to anthropogenic global greenhouse gas

(GHG) emissions [3]. In Scotland, sheep farming represents an

important sector of the agricultural industry, with approximately

2.75 million currently registered breeding ewes [4]. Even at a

national level, methane production from sheep has been recog-

nised as a significant challenge to meeting proposed targets of

lowering GHG emissions by 20% by 2020 [5]. Assessment of the

archaeal community is a prerequisite for rational manipulation of

the ruminal microbiota to lower methane emissions.

Molecular analyses of the ruminal archaea have been based

mainly on 16S rRNA gene amplicons, revealing the methanogen
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diversity and phylogeny in a number of ruminant species,

including cattle [6–9], alpaca [10], reindeer [11,12], domesticated

red deer [13], and water buffalo [14,15]. Archaeal communities in

sheep have been assessed previously in New Zealand [13], France

[16], Japan [17], Australia [18,19] and Venezuela [20]. The

methyl-coenzyme reductase A (mcrA) gene involved in the

methanogenesis pathway has provided an alternative marker to

identify ruminal archaea in lambs [21] and cattle [22], providing

good correlation of the different phylogenetic analyses. In almost

all studies, the rumen methanogens have been predominantly

assigned to the order Methanobacteriales. These methanogens

have been divided into two major and correlated groups of

Methanobrevibacter species (Mbb.) [23], Mbb. smithii, gottschalkii,
millerae and thaueri, referred to as the SGMT clade, and Mbb.
ruminantium and olleyae, referred to as the RO clade. With

amplicon based methods, there have been concerns highlighting

the comparability of the different community analyses due to

primer bias [24] and also a failure to appreciate the role of the

Rumen Cluster C (RCC) clade, related to the order Thermo-

plasmatales [25].

Microbial diversity can also be assessed using metagenomic

methods where function and taxonomy can be obtained from a

single dataset. Moreover, using extracted genomic DNA as a

starting material avoids potential amplicon sequencing biases. In

studies comparing amplicon and metagenomic methods, the

metagenomic analysis has compared well to synthetic reference

archaeal and bacterial communities [26].

The aim of the present study was to characterise by different

methods the community of methanogenic archaea in the rumen of

the economically and environmentally important sheep grazing on

Scottish upland pastures. Although the main properties of the

community were consistent across different methods, important

differences emerged in relative abundance and more detailed

taxonomic identification.

Materials and Methods

Animals and sampling
All the animal experimentation for this study was carried out

under the conditions set out by a UK Home Office licence

no. 604028, procedure reference number 8. Samples of digesta

were taken from the rumens of two mature Finn-Dorset cross

sheep (Sheep A and Sheep B), each fitted with a ruminal cannula.

The animals were grazing a mixed pasture at Glensaugh, Scotland

(altitude 300 m, mean annual temperature 7.5uC, rainfall

1130 mm) in June 2011. Approximately 50 ml of digesta were

taken from each animal via a 20-mm diameter plastic tube,

homogenized to detach the fibre adherent microbes and strained

through two layers of gauze. Aliquots of 20 ml of the filtrate were

transferred into sterile plastic containers and placed on dry ice for

transportation and then stored in a freezer at 220uC.

Figure 1. Multiple rarefaction collectors curves. Observed number of OTUs for different sequencing and analysis methods: A. SA rrn. B. IM rrn.
C. IM mcrA. D. IA rrn.
doi:10.1371/journal.pone.0106491.g001
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Sanger amplicon sequencing of 16S rRNA gene (SA rrn)
Separate clone libraries were constructed for each of the two

sheep from the respective digesta samples. DNA extraction was

carried out using a method based on repeated bead beating using a

Mini-Beadbeater (Biospec Products) plus column filtration (RBB+
C) [27]. Column filtration was carried out using the reagents and

spin filter column provided with the QIAamp DNA Stool Mini Kit

according the manufacturer’s instructions (Qiagen, GmbH).

Methanogenic archaeal 16S rRNA genes (rrn) were amplified

by PCR using the universal primers Arch f364 and Arch r1386

designed by Skillman et al. [28]. The amplicons were ligated into

TOPO TA pCR 2.1 cloning vector (Life Technologies) and

transformed into TOP10 chemically competent Escherichia coli.
Positive transformed colonies were selected at random and the

recombinant plasmids sequenced on a Beckman Coulter

CEQ8000 platform following clonal amplification using a

QuickStart dye terminator master mix (Beckman Coulter Inc.)

with M13 forward and reverse sequencing primers and the

universal archaeal primers Met448F, Met448R, Met1027F and

Met1027R [29].

Contigs were assembled by initially mapping the sequence

fragments against a reference sequence obtained from the

Ribosomal Database Project [30] of a type strain of Methano-
brevibacter ruminantium (Acc. No. AY196666) [29]. The over-

lapping regions were inspected for mismatches or gaps and

corrected to generate consensus sequences with the minimum

number of ambiguities. Vector contamination was identified and

removed after comparing the sequences to the UniVec database

using VecScreen (NCBI).

Sequences were checked for possible chimeras using Bellero-

phon [31] and a non-redundant set of operational taxonomic units

(OTUs) was generated de novo from a distance matrix of the

Table 1. Methanogenic archaea of Sheep A and Sheep B.

16S rRNA OTU Length (nt) Reads Sheep Ag2 Reads Sheep Bg2 Nearest valid species Acc No. % sequence identity

Sanger

RINH01 1030 84 63 Methanobrevibacter millerae NR042785 98

RINH02 1031 1 0 Methanobrevibacter millerae NR042785 99

RINH03 1029 4 14 Methanobrevibacter millerae NR042785 99

RINH04 1027 3 1 Methanosphaera stadtmanae CP000102 96

RINH05 1027 3 2 Methanosphaera stadtmanae CP000102 97

RINH06 1083 2 8 Methanobrevibacter millerae NR042785 99

RINH07 1030 2 1 Methanobrevibacter smithii CP000678 95

RINH08 1027 2 0 Methanosphaera stadtmanae CP000102 97

RINH09 1028 0 1 Methanosphaera stadtmanae CP000102 96

RINH10 1036 0 1 Methanobrevibacter millerae NR042785 99

RINH11 1028 0 1 Methanosphaera stadtmanae CP000102 97

RINH12 1104 0 1 Methanosphaera stadtmanae CP000102 94

RINH13 1032 0 1 Methanobrevibacter millerae NR042785 98

RINH14 1034 0 1 Methanobrevibacter millerae NR042785 97

RINH15 1027 1 0 Methanosphaera stadtmanae CP000102 96

RINH16 1038 1 0 Methanobrevibacter millerae NR042785 97

RINH17 1125 1 0 Methanobrevibacter millerae NR042785 94

RINH18 1027 1 0 Methanosphaera stadtmanae CP000102 95

RINH19 1029 1 0 Methanosphaera stadtmanae CP000102 94

RINH20 1037 1 0 Methanobrevibacter millerae NR042785 98

RINH21 1055 0 1 Methanobrevibacter millerae NR042785 97

Illumina

T01 492 3655 4630 Methanobrevibacter millerae NR042785 99

T02 488 559 664 Aciduliprofundum boonei NR074217 84

T03 488 345 545 Methanosphaera stadtmanae CP000102 97

T04 486 153 30 Aciduliprofundum boonei NR074217 82

T05 490 10 147 Methanobrevibacter ruminantium NR074117 98

T06 486 90 40 Methanosphaera stadtmanae CP000102 96

T07 486 27 28 Methanosphaera stadtmanae CP000102 95

T08 488 0 27 Picrophilus torridus NR074187 83

T09 478 5 9 Methanosarcina barkeri JQ346756 100

T10 477 0 6 Methanoculleus palmolei NR028253 99

Sanger and Illumina 16S rRNA amplicon OTUs clustered at 97% sequence identity. Taxonomic classification to the nearest valid species by BLASTn search of
representative sequences to the GenBank nucleotide database.
doi:10.1371/journal.pone.0106491.t001
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sequences constructed using the PHYLIP package dnadist [32]

and clustered at values .98% sequence similarity using mothur) at

values .98% sequence similarity [33]. Representative sequences

for each OTU were entered as queries and searched using

BLASTn against the NCBI GenBank nucleotide database [34] to

assign taxonomy to the nearest valid species.

Illumina amplicon sequencing of 16S rRNA gene (IA rrn)
16S rRNA gene amplicons were generated using DNA Free

Sensitive Taq polymerase (Bioron, GMbH) and primers Ar915aF

and Ar1386R by Kittelmann et al., (2013) [23]. Cycling conditions

were: 94uC (2 min), then 30 cycles of 94uC (10 s), 68uC (20 s),

72uC (1 min). Amplicons were purified with a Qiaquick PCR

purification kit (Qiagen, GmbH) according to manufacturer’s

instructions. 500 ng of each purified amplicon was then end

repaired using the NEBNext End Repair Module (New England

Biolabs Inc.). End repaired amplicons were purified with a

Qiaquick PCR purification kit (Qiagen, GmbH) and a single

adenine was added to the 39 ends using the NEBNext dA-Tailing

Module (New England Biolabs Inc.). Partial Truseq standard

paired end Illumina adapters with 6 bp barcodes (Integrated DNA

Technologies) were ligated to the adenylated amplicons using the

Quick Ligation Kit (New England Biolabs Inc.) and resulting

adapter-ligated amplicons were purified with a Qiaquick PCR

purification kit (Qiagen, GmbH). Full length adapter-ligated

libraries were then generated by 7 cycles of PCR using Truseq

paired end PCR primers (Integrated DNA Technologies) and

Kapa HiFi Hotstart ready mix (Kapa Biosystems Inc.), then

purified with Qiaquick PCR purification kit (Qiagen, GmbH).

Cycling conditions were 95uC (2 min), then 7 cycles of 98uC (20 s),

58uC (15 s), 72uC (20 s) and a final extension step of 72uC (5 min).

The resulting full-length libraries were denatured and diluted to

6 pM and spiked with 30% v/v denatured 12 pM PhiX control

library (Illumina Inc.). The spiked 16S rRNA gene amplicon

library was run on an Illumina MiSeq with 500 cycle Miseq

Reagent Kit v2 sequencing chemistry (Illumina Inc.). Using the

proprietary Illumina software suite, the reads were de-multiplexed

and filtered to retain only those containing both 59 and 39 primer

sequences. Paired-end reads were joined using the ‘‘fastq-join’’

command from ea-utils (http://code.google.com/p/ea-utils), spec-

ifying no difference between the two reads in the overlapping

region (-p 0) and a minimum overlap of 10 nt (-m 10).

Clustering and determination of Operational Taxonomic Units

(OTUs) were performed using CD-HIT-OTU [35] with a 97%

identity cut-off. Taxonomic classification was carried out by

submitting the representative sequence from each OTU to the

RDP classifier [30] and individually queried using BLASTn

against GenBank to assign taxonomy to the nearest valid species.

Illumina metagenome sequencing (IM rrn, IM mcrA)
Metagenomic sequences were generated from genomic DNA

prepared in the form of 101-nucleotide (nt) paired-end reads using

a HiSeq 2000 instrument (Illumina Inc.) at ARK-Genomics

(University of Edinburgh). DNA from each sample was sheared

randomly using an ultrasonicator (Covaris Inc.) and libraries for

sequencing were constructed using a TruSeq DNA sample

preparation kit (Illumina Inc.). Illumina metagenome 16S rRNA

gene sequence dataset (IM rrn) was produced as follows: a rumen

16S rRNA gene database was constructed from Bacteria and

Archaea references downloaded from the Ribosomal Database

Project (RDP) website [30]. Sequences were selected from $

1200 bp in length and with the quality tag ‘Good’ and with the

keyword ‘rumen’. Illumina metagenome sequences were clustered

and aligned to this database using Novoalign (www.novocraft.com)
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using the ‘-r All’ parameter setting to report all alignments. Where

a fragment pair aligned to a single reference, the full taxon was

reported. Where a fragment pair aligned equally well to multiple

references, the lowest common taxon was reported.

The Illumina metagenome mcrA gene sequence dataset (IM

mcrA) was prepared with a similar database, containing a complete

set of mcrA genes, downloaded from the FunGene repository

(http://fungene.cme.msu.edu/hmm_details.spr?hmm_id=16).

OTU picking and taxonomic identification followed the same

analysis method used previously for the IM rrn dataset.

Community diversity analysis
Good’s depth of coverage (C) was assessed using the formula

C = 12(n/N) where n is the number of singletons and N the total

number of clones sequenced [36]. The diversity of the OTUs for

each sheep was calculated using the Shannon index (H9) as a

summary measurement of species richness and evenness [37] and

Chao1 indices as an estimate of the likely number of species [38].

Multiple rarefaction curves were also generated to assess depth of

sequencing and species richness.

Phylogenetic analysis
Full multiple alignment and pairwise comparison of the OTU

representative sequences was carried out using ClustalW [39]. A

phylogenetic tree was constructed with MEGA5 [40] using the

Neighbor-Joining method [41] with Jukes Cantor nucleotide

substitution model and bootstrap resampling 1000 times.

Results

Sequencing and taxonomic identification
The Illumina HiSeq sequencing effort generated 307 million

reads for Sheep A and Sheep B with a total of 216,038 reads

mapped to prokaryote 16S rRNA references. Illumina metagen-

ome mcrA gene (IM mcrA) and Illumina metagenome 16S rRNA

gene (IM rrn) sequencing methods mapped 2442 reads and 3107

reads to methanogenic archaeal references and assigned them to

31 OTUs and 18 OTUs respectively. The assembly of the Sanger

amplicon sequenced 16S rRNA amplicon (SA rrn) sequences

produced 203 contigs of sequence length .1000 nt after vector

removal, and clustering produced a set of 21 OTUs (RINH01-

RINH21; Table 1). Representative sequences were submitted to

EMBL, returning accession numbers HE858590 to HE858610.

The Illumina amplicon sequencing of 16S rRNA genes (IA rrn)

method produced 10982 reads with average sequence length

483 nt and clustered to 16 OTUs. The representative sequences of

OTUs containing more than five reads per OTU were retained for

phylogenetic analysis (T01–T10; Table 1). Alpha diversity statis-

tics for each method including multiple rarefaction curves,

Shannon index, Chao1 estimated number of species and Good’s

depth of coverage (C) are presented in Figure 1 and Table 2.

Taxonomic classification in all sequencing and analysis methods

assigned all OTUs to the methanogenic archaea phylum

Euryarchaeota. The taxonomic summaries for each method are

presented in Table 1 and Figure 2. The majority of OTUs (85%–

100%) obtained in all methods were assigned to the order

Figure 2. Relative distribution of methanogenic archaeal clades for different sequencing and analysis methods: A. SA rrn. B. IM rrn.
C. IM mcrA. D. IA rrn.
doi:10.1371/journal.pone.0106491.g002
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Methanobacteriales. In detail, the resolution and relative abun-

dance of the various clades varied between methods. However, a

dominance of members of the genus Methanobrevibacter, and in

particular the SGMT clade including the species Mbb. smithii,
Mbb. gottschalkii, Mbb. millerae and Mbb. thauerii, was apparent

(Figure 2). Notable differences were seen in the relative abundance

of members of the RO clade (Mbb. ruminantium and Mbb.
olleyae), with 10% assigned by the IM mcrA method, 1% by the IA

rrn method and none from the SA rrn method. Taxonomic

identification to species level was not possible by mapping the

Illumina Metagenome to 16S rRNA gene references (IM rrn
method). Therefore, the proportion of SGMT and RO clades

within the Methanobacteriales could not be determined with this

method. The proportion of the Thermoplasmatales also varied

between methods, from none detected using SA rrn and IM mcrA
methods to 1% with the IM rrn method and 13% with the IA rrn
method. The Methanosphaera clade was somewhat less variable

between methods, where identified, with relative abundance of 4%

detected with IM mcrA, 9% SA rrn and 10% IA rrn respectively.

Phylogenetic analysis
Phylogenetic analysis was carried out on the data where

representative sequences were available and included data from

the SA rrn and IA rrn methods. Full pairwise alignment of both

the IM rrn and IM mcrA datasets was confounded by the

fragmented nature of the reads. Sequences were mapped to

Figure 3. Phylogenetic analysis of SA rrn OTUs (RINH01–RINH21) and IA rrn OTUs (T01–T10). Placement of representative sequences of
the present study in clades indicated with additional reference sequences obtained from GenBank. A sequence related to the Crenarchaeota phylum
(Acc. No. AF418935) was used as an outgroup. Full multiple alignment using ClustalW and a consensus tree was constructed using the Neighbor-
Joining method with the Jukes-Cantor substitution model. The trees were bootstrap resampled 1000 times with branch values $50% shown. Scale
shows 0.05 nucleotide substitutions per nucleotide position.
doi:10.1371/journal.pone.0106491.g003
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random positions on the 16S rRNA gene and overlapping regions

were variable or absent. Taxonomic identification was confirmed

by placement in a branch containing valid species from the

respective clades (Figure 3).

Phylogenetic analysis placed the most abundant SA rrn OTU

(RINH01) in a group containing the methanogenic archaeal

species Mbb. thaueri (U55236). This and a further 12 OTUs

containing 92% of the sequences were all placed within the

monophyletic SGMT clade [10,15]. The remaining nine OTUs

containing 8% sequences were assigned to a clade containing the

single valid species Methanosphaera stadtmanae (AY196684)

(Figure 3). Similarly, the most abundant IA rrn OTU (T01) was

placed near Mbb. millerae. This was the only IA rrn OTU placed

within the SGMT clade although it accounted for over 75% of the

relative abundance of methanogens detected using this method.

The apparent richness was also greater with 1% OTU represen-

tatives assigned to the Mbb. RO clade and the Thermoplasma-

tales, Methanosarcinales and Methanobacteriales orders.

Discussion

Characterisation and measurements of diversity of methano-

genic archaea were made from the ruminal digesta of two sheep

kept on Scottish upland grazing. Different sequencing and analysis

methodologies were applied to assess sequencing coverage,

detection of the different taxa and effectiveness for calculating

species diversity in each case. The methods used here were divided

into two broad categories: an untargeted approach, where species

are inferred by mining metagenomic data and mapping onto a

reference database, and a targeted approach using PCR to amplify

of a marker gene, alignment and clustering at specified sequences

identity. The metagenome is the total gene content of an

environmental microbiota at a given point in time [42]. Therefore,

mapping the sequences to a specially curated reference gene

database can provide a direct and representative measurement of

the microbiota. The limitations are that metagenomic data can

contain sequence fragments from any region of the target gene.

This means that the information contained may not extend to

cover the important hypervariable regions needed to make

detailed taxonomic assignation.

Measuring the diversity of an environmental microbiota using

amplicon sequencing whether based on a Sanger or NGS platform

has also been subject to criticism. With this approach, results can

be influenced by PCR amplification bias [43,44], choice of primers

[24] and data analysis method [45]. However, it remains an

established approach for measuring microbial communities with

abundant resources of target gene databases [30,46,47] and

analysis software [33,48].

To the best of our knowledge, methanogenic archaea of the

phylum Crenarchaeota have been found in the rumen in one

reported instance [49]. Otherwise the taxonomic richness of the

ruminal archaeome is relatively poor compared to the bacteria

[50] and can be summarised by a single phylum, the Euryarch-

aeota and four orders: Methanomicrobiales, Methanosarcinales,

Methanobacteriales and the Thermoplasmatales (RCC). The

latter, recently renamed Methanoplasmatales [51], is implicated

in methane emissions in the rumen, possibly from methylamines

[25]. Typically, the Methanobacteriales have been shown to be

dominant in the rumen of sheep or lambs in a number of studies

with members of the SGMT, RO, Methanosphaera spp. and

Methanobacterium spp. clades found in varying relative abundance

[20,21]. The exception to this has been methanogens from the

rumen of sheep from Queensland, Australia where the Thermo-

plasmatales were the major order of methanogens [19].

The results presented here showed a clear majority of the

Methanobacteriales using all methods. Mapping of the Illumina

metagenome sequences to the rumen 16S rRNA database (IM rrn)

identified 85% to this order with a further 1% was also mapped to

the Thermoplasmatales. This method was severely limited in

identifying OTUs with no detailed genus or species clades

identified. The lack of resolution would be due in part to the

absence of hypervariable regions offering the necessary taxonomic

resolution in the sequence fragments.

This issue was also apparent after mapping the Illumina

metagenome sequences to the mcrA reference database (IM mcrA).

Here, 69% of the reads were assigned to Methanobacteriales. This

method also detected a small proportion of Methanomicrobiales

and was also able to identify some genera and species level clades.

The failure to detect Thermoplasmatales may have been a result of

the limited size and scope of the mcrA gene reference database

[52].

The Sanger 16S rRNA amplicon sequencing methodology (SA

rrn) benefited from high quality sequences, long read length and

high resolution for taxonomic classification. OTUs for the entire

archaeome were mapped to species level clades with members of

the Mbb. SGMT clade predominating, with the highest number of

reads related to Mbb. millerae and the remainder members of the

Methanosphaera clade. SA rrn did not detect OTUs from the

Thermoplasmatales related order. With any amplicon based

method, detection of all the representative members of a microbial

community depends on genuinely universal primers. Even a single

base mismatch, particularly at the 39 region can seriously affect

primer annealing and bias the measurement of the microbial

community [24]. This method in general is also limited by the

number of sequences that can be produced in a single sequencing

run and the calculation of Good’s coverage (C) of 57%–67%

indicated the need for increased sequencing effort. While falling

well short of the upper limit of what can be achieved using this

method, the 203 near full length SA rrn sequences presented here

represented a reasonable sequencing effort for a single study.

Characterisation of the methanogens in the gut of pigs and

humans have yielded 763 and 1524 sequences respectively [53,54],

the latter being a subset of 13355 prokaryotic rrn sequences. At

this scale, the demands on time and cost begin to have an influence

on practicality of Sanger sequencing compared to next generation

sequencing methods.

The shorter average read length (483 nt) of the IA rrn method

did not seem to affect the identification to genus and species level

clades with SGMT dominant and the highest number of reads

related to Mbb. millerae. Mbb. ruminantium, a member of the RO

clade that was missed by the Sanger method was also detected

albeit in small proportion (1%). In comparable studies, the

proportions of these major methanogen clades between animals

vary inversely [23]. However, the extreme bias toward SGMT was

unusual to the Scottish sheep sampled here. The Thermoplasma-

tales clade was detected at 14% the highest proportion of all

methods and the high coverage extended to detecting a few reads

assigned to the Methanosarcinales and Methanomicrobiales

clades, albeit making up less than 1% of the total archaeome.

An effective molecular method used to characterise the rumen

methanogen community must have sufficient resolution to

separate taxa at the minimum of genus and with sufficient depth

to determine the presence and relative abundance of rare taxa in a

population that is unevenly distributed and dominated by a few

species. With appropriate primers, a high throughput amplicon

sequencing strategy is currently the best way to assess the rumen

methanogen community and in this study Illumina paired-end
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amplicon sequencing (IA rrn) effectively represented the subtle

diversity of the ruminal archaeome.

The assessment and validation of the different methods

presented here will serve as a guide to selecting the best approach

for characterising methanogenic archaea in the rumen. Both

microbiome and metagenomic methodologies will be essential

tools as part of the investigation of the role of rumen microbiota in

methane emissions and global climate change. Methane has been

identified as a potent greenhouse gas with 27 times warming

potential than CO2 [55], and enteric methane emissions derived

from the ruminal archaea have been estimated at 20–25%, making

it the largest anthropogenic source [56]. Therefore, establishing an

accurate and reliable method to characterise the methanogenic

archaea in the rumen is an important step in the efforts to help

mitigate the environmental impact of global livestock production.
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