303 research outputs found

    Letter. On the activation of [CrCl3{R-SN(H)S-R}] catalysts for selective trimerization of ethene: a freeze-quench Cr K-edge XAFS study

    No full text
    Homogeneous chromium catalysts for the selective conversion of ethene to hex-1-ene are formed from Cr(III) reagents, amino-thioether ligands of the type HN(CH2CH2SR)2, and aluminum reagents. In this study the early activation steps are investigated by EPR, UV-visible and Cr K-edge XAFS spectroscopy; rapid stopped-flow mixing and a freeze-quench allows good quality EXAFS analysis of a species formed in ~ 1 second of reaction. This is shown to involve reduction to Cr(II) and deprotonation of a NH group of the auxiliary ligand. This 4-coordinate metal-center may act as precursor for the coordination of ethene and subsequent selective oligomerization

    Статические нагрузки упругих зубьев зубчатых передач

    Get PDF
    Представим себе изготовленную из упругих материалов, статистически нагружен-ную зубчатую передачу, состоящую из двух зацепляющихся колес и обладающую не-точностями в нормальном шаге зацепления, характеризуемыми погрешностью α01 . В этом случае для соблюдения условий уравнения (1), сохранения постоянства угловых перемещений при вращении и обеспечения непрерывности зубьев, обладающих раз-личными размерами нормального шага зацепления, потребуется соответствующая сум-марная упругая деформация, вызванная передаваемым удельным крутящим моментом Mn1, будет эквивалентна величине углового перемещени

    ВИКОРИСТАННЯ ІМПУЛЬСНОГО МЕТОДУ ВИМІРЮВАННЬ ДЛЯ ВИЗНАЧЕННЯ ПОШКОДЖЕННЯ КАБЕЛЬНИХ ЛІНІЙ

    Get PDF
    В даній роботі розглядаються особливості використання приладу ІКЛ-5 для швидкого визначення точності імпульсних вимірювань в пошкодженнях кабельних ліній і точного знаходження міста пошкодження кабелю. Для досягнення поставленої мети запропонований імпульсний метод, який визначає місце і характер пошкодження кабельних ліній. Обраний у роботі підхід дає можливість вимірювання при будьякому складному характері ушкодження. Завдяки цьому забезпечується зручність, простота і швидкість вимірювань

    Activation of [CrCl3{PPh2N(iPr)PPh2}] for the selective oligomerisation of ethene: a Cr K-edge XAFS study

    No full text
    The activation of the ethene tetramerisation catalyst system based upon [CrCl3(THF)3] and N(iPr)(PPh2)2 has been investigated in situ via the reaction of [CrCl3{PPh2N(R)PPh2}(THF)] 1a (R=iPr) with excess AlMe3 in toluene. The Cr K-edge XAFS spectrum of the solution freeze quenched after 1 min reaction time indicated monomethylation of the metal with the resultant product being [CrClMe(ClAlCl3){PPh2N(R)PPh2}(THF)] 4a (R=iPr). After 5 minutes reaction time the XAFS spectra indicate that ~50% of 4a had been converted to a Cr(II) species, with the central core being high spin [CrCl2{PPh2N(R)PPh2}] 7a (R=iPr); a similar species, [CrClMe{PPh2N(R)PPh2}] 9a (R=iPr) was observed as its adduct with AlMe3 (10a) (R=iPr) when spectra were recorded on samples maintained a room temperature. Detailed analysis (EXAFS and XANES) indicated that 7a and 9a are stabilised by adduct formation of a Cr-Cl bond to the Lewis acids B(C6F5)3 and AlMe3, respectiveley. Modelling with DFT methods indicated that five-coordination was achieved, respectively by Cr-F (11a) and Cr-C (10a) interactions. In the presence of [Ph3C][Al{OC(tBuF)3}4], the Cr XAFS of the room temperature solution was inconsistent with the maintenance of a phosphine complex, but could be modelled with a site like [Cr2Me8]4- {Cr-Cr 2.01(2), Cr-C 2.14(4)}, thus demonstrating considerable variation in the effects of differing Lewis acids

    Identification of molecular markers of delayed graft function based on the regulation of biological ageing

    Get PDF
    Introduction: Delayed graft function is a prevalent clinical problem in renal transplantation for which there is no objective system to predict occurrence in advance. It can result in a significant increase in the necessity for hospitalisation post-transplant and is a significant risk factor for other post-transplant complications. Methodology: The importance of microRNAs (miRNAs), a specific subclass of small RNA, have been clearly demonstrated to influence many pathways in health and disease. To investigate the influence of miRNAs on renal allograft performance post-transplant, the expression of a panel of miRNAs in pre-transplant renal biopsies was measured using qPCR. Expression was then related to clinical parameters and outcomes in two independent renal transplant cohorts. Results: Here we demonstrate, in two independent cohorts of pre-implantation human renal allograft biopsies, that a novel pre-transplant renal performance scoring system (GRPSS), can determine the occurrence of DGF with a high sensitivity (>90%) and specificity (>60%) for donor allografts pre-transplant, using just three senescence associated microRNAs combined with donor age and type of organ donation. Conclusion: These results demonstrate a relationship between pre-transplant microRNA expression levels, cellular biological ageing pathways and clinical outcomes for renal transplantation. They provide for a simple, rapid quantitative molecular pre-transplant assay to determine post-transplant allograft function and scope for future intervention. Furthermore, these results demonstrate the involvement of senescence pathways in ischaemic injury during the organ transplantation process and an indication of accelerated bio-ageing as a consequence of both warm and cold ischaemia

    Pre-transplant CDKN2A expression in kidney biopsies predicts renal function and is a future component of donor scoring criteria

    Get PDF
    CDKN2A is a proven and validated biomarker of ageing which acts as an off switch for cell proliferation. We have demonstrated previously that CDKN2A is the most robust and the strongest pre-transplant predictor of post- transplant serum creatinine when compared to “Gold Standard” clinical factors, such as cold ischaemic time and donor chronological age. This report shows that CDKN2A is better than telomere length, the most celebrated biomarker of ageing, as a predictor of post-transplant renal function. It also shows that CDKN2A is as strong a determinant of post-transplant organ function when compared to extended criteria (ECD) kidneys. A multivariate analysis model was able to predict up to 27.1% of eGFR at one year post-transplant (p = 0.008). Significantly, CDKN2A was also able to strongly predict delayed graft function. A pre-transplant donor risk classification system based on CDKN2A and ECD criteria is shown to be feasible and commendable for implementation in the near future

    Nanomechanical sensing using spins in diamond

    Full text link
    Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.Comment: Errors in the stress susceptibility parameters present in the original arXiv version have been correcte

    A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System

    Full text link
    The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0 - 4.5 ms interrogation time, resulting in Δ\Delta g / g = 2.0e-6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.Comment: 21 pages, 10 figure

    Associations with photoreceptor thickness measures in the UK Biobank.

    Get PDF
    Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness
    corecore