150 research outputs found

    Generation of Genome-Edited Chicken Through Targeting of Primordial Germ Cells

    Get PDF

    Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells

    Get PDF
    Background: Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. Principal Findings: We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. Conclusions: The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool fo

    A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells

    Get PDF
    Chickens are an important resource for smallholder farmers who raise locally adapted, genetically distinct breeds for eggs and meat. The development of efficient reproductive technologies to conserve and regenerate chicken breeds safeguards existing biodiversity and secures poultry genetic resources for climate resilience, biosecurity, and future food production. The majority of the over 1600 breeds of chicken are raised in low and lower to middle income countries under resource-limited, small-scale production systems, which necessitates a low-tech, cost-effective means of conserving diversity is needed. Here, we validate a simple biobanking technique using cryopreserved embryonic chicken gonads. The gonads are quickly isolated, visually sexed, pooled by sex, and cryopreserved. Subsequently, the stored material is thawed and dissociated before injection into sterile host chicken embryos. By using pooled GFP and RFP-labelled donor gonadal cells and Sire Dam Surrogate mating, we demonstrate that chicks deriving entirely from male and female donor germ cells are hatched. This technology will enable ongoing efforts to conserve chicken genetic diversity for both commercial and smallholder farmers, and to preserve existing genetic resources at poultry research facilities

    Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds

    Get PDF
    In macrolecithal species, cryopreservation of the oocyte and zygote is not possible due to the large size and quantity of lipid deposited within the egg. For birds, this signifies that cryopreserving and regenerating a species from frozen cellular material are currently technically unfeasible. Diploid primordial germ cells (PGCs) are a potential means to freeze down the entire genome and reconstitute an avian species from frozen material. Here, we examine the use of genetically engineered (GE) sterile female layer chicken as surrogate hosts for the transplantation of cryopreserved avian PGCs from rare heritage breeds of chicken. We first amplified PGC numbers in culture before cryopreservation and subsequent transplantation into host GE embryos. We found that all hatched offspring from the chimera GE hens were derived from the donor rare heritage breed broiler PGCs, and using cryopreserved semen, we were able to produce pure offspring. Measurement of the mutation rate of PGCs in culture revealed that 2.7 × 10-10 de novo single-nucleotide variants (SNVs) were generated per cell division, which is comparable with other stem cell lineages. We also found that endogenous avian leukosis virus (ALV) retroviral insertions were not mobilized during in vitro propagation. Taken together, these results show that mutation rates are no higher than normal stem cells, essential if we are to conserve avian breeds. Thus, GE sterile avian surrogate hosts provide a viable platform to conserve and regenerate avian species using cryopreserved PGCs

    An E box comprises a positional sensor for regional differences in skeletal muscle gene expression and methylation

    Get PDF
    AbstractTo dissect the molecular mechanisms conferring positional information in skeletal muscles, we characterized the control elements responsible for the positionally restricted expression patterns of a muscle-specific transgene reporter, driven by regulatory sequences from the MLC1/3 locus. These sequences have previously been shown to generate graded transgene expression in the segmented axial muscles and their myotomal precursors, fortuitously marking their positional address. An evolutionarily conserved E box in the MLC enhancer core, not recognized by MyoD, is a target for a nuclear protein complex, present in a variety of tissues, which includes Hox proteins and Zbu1, a DNA-binding member of the SW12/SNF2 gene family. Mutation of this E box in the MLC enhancer has only a modest positive effect on linked CAT gene expression in transfected muscle cells, but when introduced into transgenic mice the same mutation elevates CAT transgene expression in skeletal muscles, specifically releasing the rostral restriction on MLC-CAT transgene expression in the segmented axial musculature. Increased transgene activity resulting from the E box mutation in the MLC enhancer correlates with reduced DNA methylation of the distal transgenic MLC1 promoter as well as in the enhancer itself. These results identify an E box and the proteins that bind to it as a positional sensor responsible for regional differences in axial skeletal muscle gene expression and accessibility

    Protein expression reveals a molecular sexual identity of avian primordial germ cells at pre-gonadal stages

    Get PDF
    International audienceIn poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources

    A robust system for RNA interference in the chicken using a modified microRNA operon

    Get PDF
    AbstractRNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo

    A novel piggybac transposon inducible expression system identifies a role for akt signalling in primordial germ cell migration

    Get PDF
    In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development

    Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos

    Get PDF
    Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development
    • 

    corecore