1,312 research outputs found
Luminance cues constrain chromatic blur discrimination in natural scene stimuli
Introducing blur into the color components of a natural scene has very little effect on its percept, whereas blur introduced into the luminance component is very noticeable. Here we quantify the dominance of luminance information in blur detection and examine a number of potential causes. We show that the interaction between chromatic and luminance information is not explained by reduced acuity or spatial resolution limitations for chromatic cues, the effective contrast of the luminance cue, or chromatic and achromatic statistical regularities in the images. Regardless of the quality of chromatic information, the visual system gives primacy to luminance signals when determining edge location. In natural viewing, luminance information appears to be specialized for detecting object boundaries while chromatic information may be used to determine surface properties
Production of methyl ethyl ketone from biomass using a hybrid biochemical/catalytic approach
The recent demand for sustainable routes to fuels and chemicals has led to an increased amount of research in conversion of natural resources. A potential approach for conversion of biomass to fuels and chemicals is to combine biochemical and chemical processes. This research used microbial fermentation to produce 2,3-butanediol, which was then converted to methyl ethyl ketone by dehydration over a solid acid catalyst. The fermentation process was performed using the bacteria Klebsiella oxytoca (K.O). 2,3-butanediol then dehydrated to form methyl ethyl ketone on a solid acid catalyst, the proton form of ZSM-5, and heat. The goal was to determine the reaction kinetics of 2,3-butanediol dehydration over ZSM-5, and to demonstrate the hybrid biochemical/thermochemical approach for synthesizing chemicals from biomass. It was found that ZSM-5 produced methyl ethyl ketone with high selectivity (greater than 90%), and could convert fermentative 2,3-butanediol to methyl ethyl ketone. The reaction order of 2,3-butanediol dehydration was found to be slightly large than one, and an activation energy of 32.3 kJ/mol was measured
Recommended from our members
Functional evidence for cone-specific connectivity in the human retina
NoPhysiological studies of colour vision have not yet resolved the controversial issue of how chromatic opponency is constructed at a neuronal level. Two competing theories, the cone-selective hypothesis and the random-wiring hypothesis, are currently equivocal to the architecture of the primate retina. In central vision, both schemes are capable of producing colour opponency due to the fact that receptive field centres receive input from a single bipolar cell ¿ the so called `private line arrangement¿. However, in peripheral vision this single-cone input to the receptive field centre is lost, so that any random cone connectivity would result in a predictable reduction in the quality of colour vision. Behavioural studies thus far have indeed suggested a selective loss of chromatic sensitivity in peripheral vision. We investigated chromatic sensitivity as a function of eccentricity for the cardinal chromatic (L/M and S/(L + M)) and achromatic (L + M) pathways, adopting stimulus size as the critical variable. Results show that performance can be equated across the visual field simply by a change of scale (size). In other words, there exists no qualitative loss of chromatic sensitivity across the visual field. Critically, however, the quantitative nature of size dependency for each of the cardinal chromatic and achromatic mechanisms is very specific, reinforcing their independence in terms of anatomy and genetics. Our data provide clear evidence for a physiological model of primate colour vision that retains chromatic quality in peripheral vision, thus supporting the cone-selective hypothesis
Collective plasticity of binocular interactions in the adult visual system
Binocular visual plasticity can be initiated via either bottom-up or top-down mechanisms, but it is unknown if these two forms of adult plasticity can be independently combined. In seven participants with normal binocular vision, sensory eye dominance was assessed using a binocular rivalry task, before and after a period of monocular deprivation and with and without selective attention directed towards one eye. On each trial, participants reported the dominant monocular target and the inter-ocular contrast difference between the stimuli was systematically altered to obtain estimates of ocular dominance. We found that both monocular light- and pattern-deprivation shifted dominance in favour of the deprived eye. However, this shift was completely counteracted if the non-deprived eye’s stimulus was selectively attended. These results reveal that shifts in ocular dominance, driven by bottom-up and top-down selection, appear to act independently to regulate the relative contrast gain between the two eyes
The consequences of strabismus and the benefits of adult strabismus surgery
Strabismus has a negative impact on patients’ lives regardless of their age. Factors such as self-esteem, relationships with others, education and the ability to find employment may all be negatively affected by strabismus. It is possible to correct strabismus in adulthood successfully; the chances of achieving good ocular alignment are high and the risks of intractable diplopia low. Successful surgery to realign the visual axes can improve visual function, and offer psychosocial benefits that ultimately improve quality of life. The potential benefits of strabismus surgery should be discussed with patients, regardless of their age or the age of onset of strabismus. This article reviews the impact of strabismus, focusing on the psychosocial consequences of the condition, of which many optometrists may be less aware
Flow distributed oscillation, flow velocity modulation and resonance
We examine the effects of a periodically varying flow velocity on the
standing and travelling wave patterns formed by the flow-distributed
oscillation (FDO) mechanism. In the kinematic (or diffusionless) limit, the
phase fronts undergo a simple, spatiotemporally periodic longitudinal
displacement. On the other hand, when the diffusion is significant, periodic
modulation of the velocity can disrupt the wave pattern, giving rise in the
downstream region to travelling waves whose frequency is a rational multiple of
the velocity perturbation frequency. We observe frequency locking at ratios of
1:1, 2:1 and 3:1, depending on the amplitude and frequency of the velocity
modulation. This phenomenon can be viewed as a novel, rather subtle type of
resonant forcing.Comment: submitted to Phys. Rev.
Bistable Gradient Networks II: Storage Capacity and Behaviour Near Saturation
We examine numerically the storage capacity and the behaviour near saturation
of an attractor neural network consisting of bistable elements with an
adjustable coupling strength, the Bistable Gradient Network (BGN). For strong
coupling, we find evidence of a first-order "memory blackout" phase transition
as in the Hopfield network. For weak coupling, on the other hand, there is no
evidence of such a transition and memorized patterns can be stable even at high
levels of loading. The enhanced storage capacity comes, however, at the cost of
imperfect retrieval of the patterns from corrupted versions.Comment: 15 pages, 12 eps figures. Submitted to Phys. Rev. E. Sequel to
cond-mat/020356
Cue combination of conflicting color and luminance edges
Abrupt changes in the color or luminance of a visual image potentially indicate object boundaries. Here, we consider how these cues to the visual “edge” location are combined when they conflict. We measured the extent to which localization of a compound edge can be predicted from a simple maximum likelihood estimation model using the reliability of chromatic (L−M) and luminance signals alone. Maximum likelihood estimation accurately predicted thepatternof results across a range of contrasts. Predictions consistently overestimated the relative influence of the luminance cue; although L−M is often considered a poor cue for localization, it was used more than expected. This need not indicate that the visual system is suboptimal but that its priors about which cue is moreusefulare not flat. This may be because, although strong changes in chromaticity typically represent object boundaries, changes in luminance can be caused by either a boundary or a shadow
- …