882 research outputs found

    Practical aspects of laboratory automation in pharmaceutical development

    Get PDF

    Comparison of Low Cost Miniature Spectrometers for Volcanic SO2 Emission Measurements

    Get PDF
    Miniature ultraviolet USB coupled spectrometers have become ubiquitously applied over the last decade for making volcanic SO2 emission rate measurements. The dominantly applied unit has recently been discontinued however, raising the question of which currently available devices should now be implemented. In this paper, we consider, and make recommendations on this matter, by studying a number of inexpensive compact spectrometers in respect of measurement performance and thermal behaviour. Of the studied units, the Avaspec demonstrated the best prospects for the highest time resolution applications, but in the majority of cases, we anticipate users likely preferring the less bulky USB2000+s

    Exploiting ground-based optical sensing technologies for volcanic gas surveillance

    Get PDF
    Measurements of volcanic gas composition and flux are crucial to probing and understanding a range of magmatic, hydrothermal and atmospheric interactions. The value of optical remote sensing methods has been recognised in this field for more than thirty years but several recent developments promise a new era of volcanic gas surveillance. This could see much higher time- and space-resolved data-sets, sustained at individual volcanoes even during eruptive episodes. We provide here an overview of these optical methods and their application to ground-based volcano monitoring, covering passive and active measurements in the ultraviolet and infrared spectral regions. We hope thereby to promote the use of such devices, and to stimulate development of new optical techniques for volcanological research and monitoring

    Conserved role for 14-3-3ϵ downstream of type I TGFβ receptors

    Get PDF
    AbstractSchistosoma mansoni receptor kinase-1 (SmRK1) is a divergent type I transforming growth factor β (TGFβ) receptor on the surface of adult parasites. Using the intracellular domain of SmRK1 as bait in a yeast two-hybrid screen we identified an interaction with S. mansoni 14-3-3ϵ. The interaction which is phosphorylation-dependent is not specific to schistosomes since 14-3-3ϵ also binds to TβRI, the human type I TGFβ receptor. 14-3-3ϵ enhances TGFβ-mediated signaling by TβRI and is the first TβRI-interacting non-Smad protein identified that positively regulates this receptor. The interaction of 14-3-3ϵ with schistosome and human TβRI suggests a conserved, but previously unappreciated, role for this protein in TGFβ signaling pathways

    Genomic Evidence for Formate Metabolism by as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems

    Get PDF
    The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City , but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by populations. Additionally, we present evidence for metabolically diverse, formate-utilizing populations and new genomic and phylogenetic insights into the unique Lost City Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor

    Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis

    Get PDF
    Background A non-invasive method to grade the severity of steatohepatitis and liver fibrosis is magnetic resonance imaging (MRI) based corrected T1 (cT1). We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases. Methods First, we performed a genome-wide association study (GWAS) in 14,440 Europeans in UK Biobank with liver cT1 measures. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures. Results We identified six independent genetic variants associated with liver cT1 that reached GWAS significance threshold (p<5x10-8). Four of the variants (rs75935921 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated transaminases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and BMI were causally associated with elevated cT1 whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective. Conclusion The association between two metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at risk individuals

    Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Get PDF
    Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought stepchange improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wideangle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere

    Low-cost 3D printed 1  nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy.

    Get PDF
    We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60  nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO2), ≈310  nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications

    Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Get PDF
    We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2 fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations

    UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)

    Get PDF
    The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from 2 to 8.7 t d−1, with a total emission from the entire system of ~ 20 t d−1 and ~ 13 t d−1, in November 2009 and February 2010 respectively. These data were augmented with molar H2S/SO2, CO2/SO2 and H2O/SO2 ratios, measured using a portable MultiGAS analyzer, for the individual fumaroles. Using the SO2 flux data in tandem with the molar ratios, we calculated the flux of volcanic species from individual fumaroles, and the crater as a whole: CO2 (684 t d−1 and 293 t d−1), H2S (8 t d−1 and 7.5 t d−1) and H2O (580 t d−1 and 225 t d−1).Published47-52JCR Journalrestricte
    • …
    corecore