103 research outputs found

    DiversityGAN: Diversity-Aware Vehicle Motion Prediction via Latent Semantic Sampling

    Full text link
    Vehicle trajectory prediction is crucial for autonomous driving and advanced driver assistant systems. While existing approaches may sample from a predicted distribution of vehicle trajectories, they lack the ability to explore it -- a key ability for evaluating safety from a planning and verification perspective. In this work, we devise a novel approach for generating realistic and diverse vehicle trajectories. We extend the generative adversarial network (GAN) framework with a low-dimensional approximate semantic space, and shape that space to capture semantics such as merging and turning. We sample from this space in a way that mimics the predicted distribution, but allows us to control coverage of semantically distinct outcomes. We validate our approach on a publicly available dataset and show results that achieve state-of-the-art prediction performance, while providing improved coverage of the space of predicted trajectory semantics.Comment: 8 pages, 5 figures, 1 tabl

    Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts

    Get PDF
    Cell fusion occurs when several cells combine to form a multinuclear aggregate (syncytium). In human placenta, a syncytialized trophoblast (syncytiotrophoblast) layer forms the primary interface between maternal and fetal tissue, facilitates nutrient and gas exchange, and produces hormones vital for pregnancy. Syncytiotrophoblast development occurs by differentiation of underlying progenitor cells called cytotrophoblasts, which then fuse into the syncytiotrophoblast layer. Differentiation is associated with chromatin remodeling and specific changes in gene expression mediated, at least in part, by histone acetylation. However, the epigenetic regulation of human cytotrophoblast differentiation and fusion is poorly understood. In this study, we found that human syncytiotrophoblast development was associated with deacetylation of multiple core histone residues. Chromatin immunoprecipitation sequencing revealed chromosomal regions that exhibit dynamic alterations in histone H3 acetylation during differentiation. These include regions containing genes classically associated with cytotrophoblast differentiation (TEAD4, TP63, OVOL1, CGB), as well as near genes with novel regulatory roles in trophoblast development and function, such as LHX4 and SYDE1. Prevention of histone deacetylation using both pharmacological and genetic approaches inhibited trophoblast fusion, supporting a critical role of this process for trophoblast differentiation. Finally, we identified the histone deacetylases (HDACs) HDAC1 and HDAC2 as the critical mediators driving cytotrophoblast differentiation. Collectively, these findings provide novel insights into the epigenetic mechanisms underlying trophoblast fusion during human placental development

    Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices

    Get PDF
    Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.Fil: Fan, Shiyu. University of Tennessee; Estados UnidosFil: Das, Hena. Cornell University; Estados UnidosFil: Rébola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Smith, Kevin. University of Tennessee; Estados UnidosFil: Mundy, Julia. Harvard University; Estados Unidos. Cornell University; Estados UnidosFil: Brooks, Charles. Cornell University; Estados UnidosFil: Holtz, Megan E.. Cornell University; Estados UnidosFil: Muller, David A.. Cornell University; Estados UnidosFil: Fennie, Craig J.. Cornell University; Estados UnidosFil: Ramesh, Ramamoorthy. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados UnidosFil: Schlom, Darrell G.. Cornell University; Estados UnidosFil: McGill, Stephen. National High Magnetic Field Laboratory; Estados UnidosFil: Musfeldt, Janice L.. University of Tennessee; Estados Unido

    Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma

    Full text link
    Currently, considerable resurgent interest exists in the concept of superradiance (SR), i.e., accelerated relaxation of excited dipoles due to cooperative spontaneous emission, first proposed by Dicke in 1954. Recent authors have discussed SR in diverse contexts, including cavity quantum electrodynamics, quantum phase transitions, and plasmonics. At the heart of these various experiments lies the coherent coupling of constituent particles to each other via their radiation field that cooperatively governs the dynamics of the whole system. In the most exciting form of SR, called superfluorescence (SF), macroscopic coherence spontaneously builds up out of an initially incoherent ensemble of excited dipoles and then decays abruptly. Here, we demonstrate the emergence of this photon-mediated, cooperative, many-body state in a very unlikely system: an ultradense electron-hole plasma in a semiconductor. We observe intense, delayed pulses, or bursts, of coherent radiation from highly photo-excited semiconductor quantum wells with a concomitant sudden decrease in population from total inversion to zero. Unlike previously reported SF in atomic and molecular systems that occur on nanosecond time scales, these intense SF bursts have picosecond pulse-widths and are delayed in time by tens of picoseconds with respect to the excitation pulse. They appear only at sufficiently high excitation powers and magnetic fields and sufficiently low temperatures - where various interactions causing decoherence are suppressed. We present theoretical simulations based on the relaxation and recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing magnetic field, which successfully capture the salient features of the experimental observations.Comment: 21 pages, 4 figure

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    From little things, big things grow: trends and fads in 110 years of Australian ornithology

    Full text link
    Publishing histories can reveal changes in ornithological effort, focus or direction through time. This study presents a bibliometric content analysis of Emu (1901–2011) which revealed 115 trends (long-term changes in publication over time) and 18 fads (temporary increases in publication activity) from the classification of 9,039 articles using 128 codes organised into eight categories (author gender, author affiliation, article type, subject, main focus, main method, geographical scale and geographical location). Across 110 years, private authorship declined, while publications involving universities and multiple institutions increased; from 1960, female authorship increased. Over time, question-driven studies and incidental observations increased and decreased in frequency, respectively. Single species and ‘taxonomic group’ subjects increased while studies of birds at specific places decreased. The focus of articles shifted from species distribution and activities of the host organisation to breeding, foraging and other biological/ecological topics. Site- and Australian-continental-scales slightly decreased over time; non-Australian studies increased from the 1970s. A wide variety of fads occurred (e.g. articles on bird distribution, 1942–1951, and using museum specimens, 1906–1913) though the occurrence of fads decreased over time. Changes over time are correlated with technological, theoretical, social and institutional changes, and suggest ornithological priorities, like those of other scientific disciplines, are temporally labil

    Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface

    Get PDF
    Theropod dinosaurs show striking morphological and functional tail variation; e.g., a long, robust, basal theropod tail used for counterbalance, or a short, modern avian tail used as an aerodynamic surface. We used a quantitative morphological and functional analysis to reconstruct intervertebral joint stiffness in the tail along the theropod lineage to extant birds. This provides new details of the tail's morphological transformation, and for the first time quantitatively evaluates its biomechanical consequences. We observe that both dorsoventral and lateral joint stiffness decreased along the non-avian theropod lineage (between nodes Theropoda and Paraves). Our results show how the tail structure of non-avian theropods was mechanically appropriate for holding itself up against gravity and maintaining passive balance. However, as dorsoventral and lateral joint stiffness decreased, the tail may have become more effective for dynamically maintaining balance. This supports our hypothesis of a reduction of dorsoventral and lateral joint stiffness in shorter tails. Along the avian theropod lineage (Avialae to crown group birds), dorsoventral and lateral joint stiffness increased overall, which appears to contradict our null expectation. We infer that this departure in joint stiffness is specific to the tail's aerodynamic role and the functional constraints imposed by it. Increased dorsoventral and lateral joint stiffness may have facilitated a gradually improved capacity to lift, depress, and swing the tail. The associated morphological changes should have resulted in a tail capable of producing larger muscular forces to utilise larger lift forces in flight. Improved joint mobility in neornithine birds potentially permitted an increase in the range of lift force vector orientations, which might have improved flight proficiency and manoeuvrability. The tail morphology of modern birds with tail fanning capabilities originated in early ornithuromorph birds. Hence, these capabilities should have been present in the early Cretaceous, with incipient tail-fanning capacity in the earliest pygostylian birds
    corecore