18 research outputs found
No apparent benefits of allonursing for recipient offspring and mothers in the cooperatively breeding meerkat.
Cooperative behaviours by definition are those that provide some benefit to another individual. Allonursing, the nursing of non-descendent young, is often considered a cooperative behaviour and is assumed to provide benefits to recipient offspring in terms of growth and survival, and to their mothers, by enabling them to share the lactation load. However, these proposed benefits are not well understood, in part because maternal and litter traits and other ecological and social variables are not independent of one another, making patterns hard to discern using standard univariate analyses. Here, we investigate the potential benefits of allonursing in the cooperatively breeding Kalahari meerkat, where socially subordinate females allonurse the young of a dominant pair without having young of their own. We use structural equation modelling to allow us to account for the interdependence of maternal traits, litter traits and environmental factors. We find no evidence that allonursing provides benefits to pups or mothers. Pups that received allonursing were not heavier at emergence and did not have a higher survival rate than pups that did not receive allonursing. Mothers whose litters were allonursed were not in better physical condition, did not reconceive faster and did not reduce their own nursing investment compared to mothers who nursed their litters alone. These patterns were not significantly influenced by whether mothers were in relatively good, or poor, condition. We suggest that allonursing may persist in this species because the costs to allonurses may be low. Alternatively, allonursing may confer other, more cryptic, benefits to pups or allonurses, such as immunological or social benefits.KJM was supported by a research grant from the Cambridge Philosophical Society. KEM was supported by a US National Science Foundation grant to Alison Bell and KEM (NSF IOS 1121980).This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/doi/10.1111/1365-2656.12343/abstract
Shaping potential landscape for organic polariton condensates in double-dye cavities
We investigate active spatial control of polariton condensates independently
of the polariton-, gain-inducing excitation profile. This is achieved by
introducing an extra intracavity semiconductor layer, non-resonant to the
cavity mode. Saturation of the optical absorption in the uncoupled layer
enables the ultra-fast modulation of the effective refractive index and,
through excited-state absorption, the polariton dissipation. Utilising these
mechanisms, we demonstrate control over the spatial profile and density of a
polariton condensate at room temperature
k-Space Hyperspectral Imaging by a Birefringent Common-Path Interferometer
Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Data from: No apparent benefits of allonursing for recipient offspring and mothers in the cooperatively breeding meerkat
1. Cooperative behaviours by definition are those that provide some benefit to another individual. Allonursing, the nursing of non-descendent young, is often considered a cooperative behaviour and is assumed to provide benefits to recipient offspring in terms of growth and survival, and to their mothers, by enabling them to share the lactation load. However, these proposed benefits are not well understood, in part because maternal and litter traits and other ecological and social variables are not independent of one another, making patterns hard to discern using standard univariate analyses. 2. Here, we investigate the potential benefits of allonursing in the cooperatively breeding Kalahari meerkat, where socially subordinate females allonurse the young of a dominant pair without having young of their own. 3. We use structural equation modelling to allow us to account for the interdependence of maternal traits, litter traits and environmental factors. 4. We find no evidence that allonursing provides benefits to pups or mothers. Pups that received allonursing were not heavier at emergence and did not have a higher survival rate than pups that did not receive allonursing. Mothers whose litters were allonursed were not in better physical condition, did not reconceive faster and did not reduce their own nursing investment compared to mothers who nursed their litters alone. These patterns were not significantly influenced by whether mothers were in relatively good, or poor, condition. 5. We suggest that allonursing may persist in this species because the costs to allonurses may be low. Alternatively, allonursing may confer other, more cryptic, benefits to pups or allonurses, such as immunological or social benefits
benefits of allonursing in meerkats
Data extracted from a long-term dataset collected in the field over ~20 years. Dataset created using Microsoft Excel. Data described in column headings; pertains to the potential benefits the presence of allonurses might have on maternal condition, lactation duration, interbirth interval, offspring survival, and weight at emergence from the natal burrow
Predator-induced transgenerational plasticity in animals : a meta-analysis
There is growing evidence that the environment experienced by one generation can influence phenotypes in the next generation via transgenerational plasticity (TGP). One of the best-studied examples of TGP in animals is predator-induced transgenerational plasticity, whereby exposing parents to predation risk triggers changes in offspring phenotypes. Yet, there is a lack of general consensus synthesizing the predator–prey literature with existing theory pertaining to ecology and evolution of TGP. Here, we apply a meta-analysis to the sizable literature on predator-induced TGP (441 effect sizes from 29 species and 49 studies) to explore five hypotheses about the magnitude, form and direction of predator-induced TGP. Hypothesis #1: the strength of predator-induced TGP should vary with the number of predator cues. Hypothesis #2: the strength of predator-induced TGP should vary with reproductive mode. Hypothesis #3: the strength and direction of predator-induced TGP should vary among offspring phenotypic traits because some traits are more plastic than others. Hypothesis #4: the strength of predator-induced TGP should wane over ontogeny. Hypothesis #5: predator-induced TGP should generate adaptive phenotypes that should be more evident when offspring are themselves exposed to risk. We found strong evidence for predator-induced TGP overall, but no evidence that parental predator exposure causes offspring traits to change in a particular direction. Additionally, we found little evidence in support of any of the specific hypotheses. We infer that the failure to find consistent evidence reflects the heterogeneous nature of the phenomena, and the highly diverse experimental designs used to study it. Together, these findings set an agenda for future work in this area
Nano-second exciton-polariton lasing in organic microcavities
Organic semiconductors are a promising platform for ambient polaritonics. Several applications, such as polariton routers, and many-body condensed matter phenomena are currently hindered due to the ultra-short polariton lifetimes in organics. Here, we employ a single-shot dispersion imaging technique, using 4 ns long non-resonant excitation pulses, to study polariton lasing in a λ/2 planar organic microcavity filled with BODIPY-Br dye molecules. At a power threshold density of 1.5 MW/cm 2, we observe the transition to a quasi-steady state, 1.2 ns long-lived, single-mode polariton lasing and the concomitant superlinear increase in photoluminescence, spectral line-narrowing, and energy blueshift.</p