370 research outputs found

    Timing of pubertal stages and breast cancer risk : the Breakthrough Generations Study

    Get PDF
    Introduction: Breast development and hormonal changes at puberty might affect breast cancer risk, but epidemiological analyses have focussed largely on age at menarche and not at other pubertal stages. Methods: We investigated associations between the timing of pubertal stages and breast cancer risk using data from a cohort study of 104,931 women (Breakthrough Generations Study, UK, 2003–2013). Pubertal variables were reported retrospectively at baseline. Breast cancer risk was analysed using Cox regression models with breast cancer diagnosis as the outcome of interest, attained age as the underlying time variable, and adjustment for potentially confounding variables. Results: During follow-up (mean = 4.1 years), 1094 breast cancers (including ductal carcinoma in situ) occurred. An increased breast cancer risk was associated with earlier thelarche (age when breast growth begins; HR [95% CI] = 1.23 [1.02, 1.48], 1 [referent] and 0.80 [0.69, 0.93] for ≤10, 11–12 and ≥13 years respectively), menarche (initiation of menses; 1.06 [0.93, 1.21], 1 [referent] and 0.78 [0.62, 0.99] for ≤12, 13–14 and ≥15 years), regular periods (0.99 [0.83, 1.18], 1 [referent] and 0.74 [0.59, 0.92] for ≤12, 13–14 and ≥15 years) and age reached adult height (1.25 [1.03, 1.52], 1 [referent] and 1.07 [0.87, 1.32] for ≤14, 15–16 and ≥17 years), and with increased time between thelarche and menarche (0.87 [0.65, 1.15], 1 [referent], 1.14 [0.96, 1.34] and 1.27 [1.04, 1.55] for <0, 0, 1 and ≥2 years), and shorter time between menarche and regular periods (1 [referent], 0.87 [0.73, 1.04] and 0.66 [0.50, 0.88] for 0, 1 and ≥2 years). These associations were generally similar when considered separately for premenopausal and postmenopausal breast cancer. Conclusions: Breast duct development may be a time of heightened susceptibility to risk of carcinogenesis, and greater attention needs to be given to the relation of breast cancer risk to the different stages of puberty

    Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Get PDF
    Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment

    Survival-Time Distribution for Inelastic Collapse

    Full text link
    In a recent publication [PRL {\bf 81}, 1142 (1998)] it was argued that a randomly forced particle which collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribution behaves asymptotically as a power-law in time, and that the exponent governing this decay is non-universal. An approximate calculation of the collapse-time exponent confirms this behaviour and shows how inelastic collapse can be viewed as a generalised persistence phenomenon.Comment: 4 pages, RevTe

    Changes in white cell estimates and plasma chemistry measurements following oral or external dosing of double-crested cormorants, \u3ci\u3ePhalacocorax auritus\u3c/i\u3e, with artificially weathered MC252 oil

    Get PDF
    Scoping studies were designed whereby double-crested cormorants (Phalacocorax auritus) were dosed with artificially weathered Deepwater Horizon (DWH) oil either daily through oil injected feeder fish, or by application of oil directly to feathers every three days. Preening results in oil ingestion, and may be an effective means of orally dosing birds with toxicant to improve our understanding of the full range of physiological effects of oral oil ingestion on birds. Blood samples collected every 5–6 days were analyzed for a number of clinical endpoints including white blood cell (WBC) estimates and differential cell counts. Plasma biochemical evaluations were performed for changes associated with oil toxicity. Oral dosing and application of oil to feathers resulted in clinical signs and statistically significant changes in a number of biochemical endpoints consistent with petroleum exposure. In orally dosed birds there were statistically significant decreases in aspartate amino transferase (AST) and gamma glutamyl transferase (GGT) activities, calcium, chloride, cholesterol, glucose, and total protein concentrations, and increases in plasma urea, uric acid, and phosphorus concentrations. Plasma electrophoresis endpoints (pre-albumin, albumin, alpha-2 globulin, beta globulin, and gamma globulin concentrations and albumin: globulin ratios) were decreased in orally dosed birds. Birds with external oil had increases in urea, creatinine, uric acid, creatine kinase (CK), glutamate dehydrogenase (GLDH), phosphorus, calcium, chloride, potassium, albumin, alpha-1 globulin and alpha-2 globulin. Decreases were observed in AST, beta globulin and glucose. WBC also differed between treatments; however, this was in part driven by monocytosis present in the externally oiled birds prior to oil treatment

    Changes in white cell estimates and plasma chemistry measurements following oral or external dosing of double-crested cormorants, \u3ci\u3ePhalacocorax auritus\u3c/i\u3e, with artificially weathered MC252 oil

    Get PDF
    Scoping studies were designed whereby double-crested cormorants (Phalacocorax auritus) were dosed with artificially weathered Deepwater Horizon (DWH) oil either daily through oil injected feeder fish, or by application of oil directly to feathers every three days. Preening results in oil ingestion, and may be an effective means of orally dosing birds with toxicant to improve our understanding of the full range of physiological effects of oral oil ingestion on birds. Blood samples collected every 5–6 days were analyzed for a number of clinical endpoints including white blood cell (WBC) estimates and differential cell counts. Plasma biochemical evaluations were performed for changes associated with oil toxicity. Oral dosing and application of oil to feathers resulted in clinical signs and statistically significant changes in a number of biochemical endpoints consistent with petroleum exposure. In orally dosed birds there were statistically significant decreases in aspartate amino transferase (AST) and gamma glutamyl transferase (GGT) activities, calcium, chloride, cholesterol, glucose, and total protein concentrations, and increases in plasma urea, uric acid, and phosphorus concentrations. Plasma electrophoresis endpoints (pre-albumin, albumin, alpha-2 globulin, beta globulin, and gamma globulin concentrations and albumin: globulin ratios) were decreased in orally dosed birds. Birds with external oil had increases in urea, creatinine, uric acid, creatine kinase (CK), glutamate dehydrogenase (GLDH), phosphorus, calcium, chloride, potassium, albumin, alpha-1 globulin and alpha-2 globulin. Decreases were observed in AST, beta globulin and glucose. WBC also differed between treatments; however, this was in part driven by monocytosis present in the externally oiled birds prior to oil treatment

    Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    Full text link
    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretations were reasonable given the limitations set by spatial resolution and our knowledge of Vesta and HED meteorites at that time. Our analysis shows that ground-based and HST observations are critical for our understanding of small bodies and provide valuable support for ongoing and future spacecraft missions.Comment: Pages: 51, Figures: 9, Tables:

    Shape, Density, and Geology of the Nucleus of Comet 103P/Hartley 2

    Get PDF
    Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds 1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the objects complex rotation

    2001 AAPP Monograph Series

    Get PDF
    The African American Professors Program (AAPP) at the University of South Carolina is pleased to produce this premier edition of its annual monograph series. It is fitting that the program assume a leadership role in promoting scholarly products that will prove to be useful in future research efforts by faculty and students in higher education. Scholars who have contributed manuscripts for this monograph are to be commended for adding this additional responsibility to their academic workload. Writing across disciplines adds to the intellectual diversity of these papers. From neophytes, relatively speaking, to an array of very experienced individuals, the chapters have been researched and, comprehensively, written. AAPP was created in 1997 under the leadership of Drs. Aretha B. Pigford and Leonard 0. Pellicer, Department of Educational Leadership and Policies. It was designed to address the underrepresentation of African American professors on college and university campuses. Its mission is to expand the pool of these professors in critical academic and research areas. Sponsored by the University of South Carolina, the W. K. Kellogg Foundation, and the South Carolina General Assembly, the program recruits students with bachelor\u27s, master\u27s, and doctoral degrees for disciplines in which African Americans, currently, are underrepresented. An important component of the program is the mentoring experience that is provided. Each student is assigned to a mentor professor who guides the student through a selected academic program and provides various learning experiences. When possible, the mentor serves as chair of the student\u27s doctoral committee. The mentor, also, provides opportunities for the student to team teach, conduct research, and co-author publications. Students have opportunities to attend committee, faculty, and professional meetings, as well as engage in a range of activities that characterize professional life in academia. Scholars enrolled in the program, also, are involved in programmatic and institutional workshops, independent research, and program development. The establishment or genesis of this monograph series is seen as responding to an opportunity to be sensitive to an academic expectation of graduates as they pursue career placement and, also, one that allows for the dissemination of AAPP products to a broader community. We hope that you, likewise, will read this premier monograph of the African American Professors Program with enthusiasm or enlightenment. John McFadden, Ph.D. The Benjamin Elijah Mays Professor Director, African American Professors Program University of South Carolinahttps://scholarcommons.sc.edu/mcfadden_monographs/1005/thumbnail.jp
    corecore