287 research outputs found

    Phylogenetic relationships within Chrysogorgia (Alcyonacea: Octocorallia), a morphologically diverse genus of octocoral, revealed using a target enrichment approach

    Get PDF
    The octocoral genus Chrysogorgia (Duchassaing and Michelotti, 1864) contains 81 nominal species that are ecologically important components of benthic communities. Taxonomic examination of a large set of samples revealed many provisional new species, exhibiting a wide range of morphological variation. We established nine, distinct morphological groups of Chrysogorgia s.l. that were hypothesized to represent distinct genera. Here, we applied a recently developed universal target enrichment bait method for octocoral exons and ultraconserved elements (UCEs) on 96 specimens varying in morphology, collection ages and DNA quality and quantity to determine whether there was genetic support for these morphologically defined groups. Following Illumina sequencing and SPAdes assembly we recovered 1,682 of 1,700 targeted exon loci and 1,333 of 1,340 targeted UCE loci. Locus recovery per sample was highly variable and significantly correlated with time since specimen collection (2-60 years) and DNA quantity and quality. Phylogenetically informative sites in UCE and exon loci were ∼35% for 50% and 75% taxon-occupancy matrices. Maximum likelihood analyses recovered highly resolved trees with topologies supporting the recognition of 11 candidate genera, corresponding with morphological groups assigned a priori, nine of which are novel. Our results also demonstrate that this target-enrichment approach can be successfully applied to degraded museum specimens of up to 60 years old. This study shows that an integrative approach consisting of molecular and morphological methods will be essential to a proper revision of Chrysogorgia taxonomy and to understand regional diversity of these ecologically important corals

    A Modified View on Octocorals: Heteroxenia fuscescens Nematocysts Are Diverse, Featuring Both an Ancestral and a Novel Type

    Get PDF
    Cnidarians are characterized by the presence of stinging cells containing nematocysts, a sophisticated injection system targeted mainly at prey-capture and defense. In the anthozoan subclass Octocorallia nematocytes have been considered to exist only in low numbers, to be small, and all of the ancestral atrichous-isorhiza type. This study, in contrast, revealed numerous nematocytes in the octocoral Heteroxenia fuscescens. The study demonstrates the applicability of cresyl-violet dye for differential staining and stimulating discharge of the nematocysts. In addition to the atrichous isorhiza-type of nematocysts, a novel type of macrobasic-mastigophore nematocysts was found, featuring a shaft, uniquely comprised of three loops and densely packed arrow-like spines. In contrast to the view that octocorals possess a single type of nematocyst, Heteroxenia fuscescens features two distinct types, indicating for the first time the diversification and complexity of nematocysts for Octocorallia

    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals

    Get PDF
    The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ. This group is sister to gold corals (Primnoidae Milne Edwards, 1857) and deep-sea bamboo corals (Keratoisidinae Gray, 1870), whose diversity also peaks in the deep sea. Nine species of Chrysogorgia that were described from depths shallower than 200 m, and mtMutS haplotypes sequenced from specimens sampled as shallow as 101 m, suggest a shallow-water emergence of some Chrysogorgia species

    Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Connectivity is an important component of metapopulation dynamics in marine systems and can influence population persistence, migration rates and conservation decisions associated with Marine Protected Areas (MPAs). In this study, we compared the genetic diversity, gene flow and population structure of two octocoral species, Eunicella verrucosa and Alcyonium digitatum, in the northeast Atlantic (ranging from the northwest of Ireland and the southern North Sea, to southern Portugal), using two panels of thirteen and eight microsatellite loci, respectively. Our results identified regional genetic structure in E. verrucosa partitioned between populations from southern Portugal, northwest Ireland, and Britain/France; subsequent hierarchical analysis of population structure also indicated reduced gene flow between southwest Britain and northwest France. However, over a similar geographical area, A. digitatum showed little evidence of population structure, suggesting high gene flow and/or a large effective population size; indeed, the only significant genetic differentiation detected in A. digitatum occurred between North Sea samples and those from the English Channel/northeast Atlantic. In both species the vast majority of gene flow originated from sample sites within regions, with populations in southwest Britain being the predominant source of contemporary exogenous genetic variants for the populations studied. Unsurprisingly, historical patterns of gene flow appeared more complex, though again southwest Britain appeared an important source of genetic variation for both species. Our findings have major conservation implications, particularly for E. verrucosa, a protected species in UK waters and listed by the IUCN as ‘Vulnerable’, and for the designation and management of European MPAs.We thank Natural England (project No. RP0286, contract No. SAE 03-02-146), the NERC (grant No. NE/L002434/1) and the University of Exeter for funding this research. Additional funding for sample collection, travel and microsatellite development was provided by the EU Framework 7 ASSEMBLE programme, agreement no. 227799, and NERC grant No. NBAF-362

    Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes

    Get PDF
    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus

    The total synthesis of (-)-cyanthiwigin F by means of double catalytic enantioselective alkylation

    Get PDF
    Double catalytic enantioselective transformations are powerful synthetic methods that can facilitate the construction of stereochemically complex molecules in a single operation. In addition to generating two or more stereocentres in a single reaction, multiple asymmetric reactions also impart increased enantiomeric excess to the final product in comparison with the analogous single transformation. Furthermore, multiple asymmetric operations have the potential to independently construct several stereocentres at remote points within the same molecular scaffold, rather than relying on pre-existing chiral centres that are proximal to the reactive site. Despite the inherent benefits of multiple catalytic enantioselective reactions, their application to natural product total synthesis remains largely underutilized. Here we report the use of a double stereoablative enantioselective alkylation reaction in a concise synthesis of the marine diterpenoid (-)-cyanthiwigin F (ref. 8). By employing a technique for independent, selective formation of two stereocentres in a single stereoconvergent operation, we demonstrate that a complicated mixture of racemic and meso diastereomers may be smoothly converted to a synthetically useful intermediate with exceptional enantiomeric excess. The stereochemical information generated by means of this catalytic transformation facilitates the easy and rapid completion of the total synthesis of this marine natural product

    Productivity links morphology, symbiont specificity, and bleaching in the evolution of Caribbean octocoral symbioses

    Get PDF
    Many cnidarians host endosymbiotic dinoflagellates from the genus Symbiodinium. It is generally assumed that the symbiosis is mutualistic, where the host benefits from symbiont photosynthesis while providing protection and photosynthetic substrates. Diverse assemblages of symbiotic gorgonian octocorals can be found in hard bottom communities throughout the Caribbean. While current research has focused on the phylo- and population genetics of gorgonian symbiont types and their photo-physiology, relatively less work has focused on biogeochemical benefits conferred to the host and how these benefits vary across host species. Here, we examine this symbiosis among 11 gorgonian species collected in Bocas del Toro, Panama. By coupling light and dark bottle incubations (P/R) with 13C-bicarbonate tracers, we quantified the link between holobiont oxygen metabolism with carbon assimilation and translocation from symbiont to host. Our data show that P/R varied among species, and was correlated with colony morphology and polyp size. Sea fans and sea plumes were net autotrophs (P/R > 1.5) while nine species of sea rods were net heterotrophs with most below compensation (P/R < 1.0). 13C assimilation corroborated the P/R results, and maximum δ13Chost values were strongly correlated with polyp size, indicating higher productivity by colonies with high polyp SA:V. A survey of gorgonian-Symbiodinium associations revealed that productive species maintain specialized, obligate symbioses and are more resistant to coral bleaching, whereas generalist and facultative associations are common among sea rods that have higher bleaching sensitivities. Overall, productivity and polyp size had strong phylogenetic signals with carbon fixation and polyp size showing evidence of trait covariance.published_or_final_versio

    The role and scope of practice of midwives in humanitarian settings:a systematic review and content analysis

    Get PDF
    Abstract Background Midwives have an essential role to play in preparing for and providing sexual and reproductive health (SRH) services in humanitarian settings due to their unique knowledge and skills, position as frontline providers and geographic and social proximity to the communities they serve. There are considerable gaps in the international guidance that defines the scope of practice of midwives in crises, particularly for the mitigation and preparedness, and recovery phases. We undertook a systematic review to provide further clarification of this scope of practice and insights to optimise midwifery performance. The review aimed to determine what SRH services midwives are involved in delivering across the emergency management cycle in humanitarian contexts, and how they are working with other professionals to deliver health care. Methods Four electronic databases and the websites of 33 organisations were searched between January and March 2017. Papers were eligible for inclusion if they were published in English between 2007 and 2017 and reported primary research pertaining to the role of midwives in delivering and performing any component of sexual and/or reproductive health in humanitarian settings. Content analysis was used to map the study findings to the Minimum Initial Service Package (MISP) for SRH across the three phases of the disaster management cycle and identify how midwives work with other members of the health care team. Results Fourteen studies from ten countries were included. Twelve studies were undertaken in conflict settings, and two were conducted in the context of the aftermath of natural disasters. We found a paucity of evidence from the research literature that examines the activities and roles undertaken by midwives across the disaster management cycle. This lack of evidence was more apparent during the mitigation and preparedness, and recovery phases than the response phase of the disaster management cycle. Conclusion Research-informed guidelines and strategies are required to better align the scope of practice of midwives with the objectives of multi-agency guidelines and agreements, as well as the activities of the MISP, to ensure that the potential of midwives can be acknowledged and optimised across the disaster management cycle
    corecore