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Contrasting patterns of population structure and gene flow
facilitate exploration of connectivity in two widely distributed
temperate octocorals

LP Holland1, TL Jenkins1 and JR Stevens

Connectivity is an important component of metapopulation dynamics in marine systems and can influence population
persistence, migration rates and conservation decisions associated with Marine Protected Areas (MPAs). In this study, we
compared the genetic diversity, gene flow and population structure of two octocoral species, Eunicella verrucosa and Alcyonium
digitatum, in the northeast Atlantic (ranging from the northwest of Ireland and the southern North Sea, to southern Portugal),
using two panels of 13 and 8 microsatellite loci, respectively. Our results identified regional genetic structure in E. verrucosa
partitioned between populations from southern Portugal, northwest Ireland and Britain/France; subsequent hierarchical analysis
of population structure also indicated reduced gene flow between southwest Britain and northwest France. However, over a
similar geographical area, A. digitatum showed little evidence of population structure, suggesting high gene flow and/or a large
effective population size; indeed, the only significant genetic differentiation detected in A. digitatum occurred between North
Sea samples and those from the English Channel/northeast Atlantic. In both species the vast majority of gene flow originated
from sample sites within regions, with populations in southwest Britain being the predominant source of contemporary exogenous
genetic variants for the populations studied. Overall, historical patterns of gene flow appeared more complex, though again
southwest Britain appeared to be an important source of genetic variation for both species. Our findings have major conservation
implications, particularly for E. verrucosa, a protected species in UK waters and listed by the IUCN as ‘Vulnerable’, and for the
designation and management of European MPAs.
Heredity advance online publication, 15 March 2017; doi:10.1038/hdy.2017.14

INTRODUCTION

Population connectivity has emerged as a key factor in the sustainable
management of marine resources (Fogarty and Botsford, 2007; Da
Silva et al., 2014), in tracking invasive species (Pérez-Portela et al.,
2012), in monitoring the effects of climate change (Munday et al.,
2009; Gerber et al., 2014), and in designating networks of protected
areas (Jones et al., 2007; Marti-Puig et al., 2013). For most benthic
marine organisms, connectivity is typically defined by dispersal during
early life stages and is intimately associated with oceanic currents and
topographical features (Cowen et al., 2007). However, connectivity can
vary across marine taxa, even between closely related species over
similar spatial scales (Bargelloni et al., 2003, 2005; Charrier et al., 2006;
Kool et al., 2013) and population structure can be determined by the
extent of dispersal from distant vs local sources, resulting in fully
‘open’ (panmictic) to fully ‘closed’ (isolated) populations (see Cowen
and Sponaugle, 2009 and references therein). Perhaps most impor-
tantly from an applied perspective, population structure and gene flow
can be used as a proxy for understanding population connectivity
(Hedgecock et al., 2007; Lowe and Allendorf, 2010; Kool et al., 2013).
Advances in our knowledge of marine population connectivity are

fundamental for the strategic allocation of available resources in a way
that maximises protection of marine biodiversity (Kool et al., 2013).

Moreover, the global extent of protected areas is unlikely to mitigate
the current rate of marine and terrestrial biodiversity loss (Mora and
Sale, 2011). Among the 15 European countries that have signed the
Oslo/Paris (OSPAR) Convention (for the protection of the marine
environment of the northeast Atlantic), there is a requirement to
establish an ‘ecologically coherent’ network of Marine Protected Areas
(MPAs), which collectively aims to deliver more benefits to biodi-
versity than single, unrelated MPAs (OSPAR Convention, 2013). As
connectivity is a key feature of an MPA network, it is important that
empirical estimates of population connectivity are considered during
the designation or review stages of a network (Jones et al., 2007). For
example, guidelines for incorporating connectivity into designing
networks of marine reserves are available for coral reefs and are likely
to be useful for the management and protection of these systems
(Almany et al., 2009; McCook et al., 2009). Several analyses of
connectivity in established networks have also identified deficiencies
that may reduce the efficacy of a network. For example, Puckett et al.
(2014) modelled dispersal of the eastern oyster (Crassostrea virginica)
on the Atlantic coast of North Carolina and showed that if marine
reserves were too small – relative to the mean dispersal distance of the
oyster– local retention of larvae was reduced; likewise, if reserves were
spaced too far apart, connectivity became limited. While early

Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
Correspondence: Dr J Stevens, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
E-mail: j.r.stevens@exeter.ac.uk
1These authors contributed equally to this work.
Received 24 May 2016; revised 3 February 2017; accepted 17 February 2017

Heredity (2017), 1–14
Official journal of the Genetics Society
www.nature.com/hdy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/80698852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1038/hdy.2017.14
mailto:j.r.stevens@exeter.ac.uk
http://www.nature.com/hdy


landmark studies of genetic connectivity in the marine environment
(for example, Palumbi, 2003) focused largely on gene flow, barriers to
gene flow and isolation by distance (IBD), more recent studies (for
example, Arizmendi-Mejía et al., 2015; Gagnaire et al., 2015) have
further refined our understanding of drivers of marine genetic
connectivity and have demonstrated the importance of additional
factors in driving or disrupting genetic connectivity, for example,
effective population size and genetic drift. Overall, such findings
suggest a greater understanding of population structure and con-
nectivity is required to optimise the conservation of marine biodi-
versity and to maximise the efficacy of such networks (for example,
OSPAR Commission, 2006; Jones et al., 2007).
Currently, and until such time as a robust understanding of the

functioning of networks of MPAs is achieved, individual MPAs are
typically designated based on the presence of rare or protected species
or guilds of species; for example, in the waters of southwest Britain,
the presence of Eunicella verrucosa (the pink sea fan) is often listed as a
factor in the designation of an area as a Marine Conservation Zone
(MCZ). However, population genetic studies of octocorals across this
area, and the northeast Atlantic in general, are limited. Previous
research in this region has had either a phylogenetic (for example,
McFadden and Hutchinson, 2004) or phylogeographic focus (for
example, Herrera et al., 2012), while existing connectivity research on
this subclass in the region has assessed the genetic diversity and
structure of primarily Mediterranean species, for example, Corallium
rubrum (Costantini et al., 2007; Ledoux et al., 2010; Aurelle et al.,
2011), Eunicella singularis (Costantini et al., 2016), Eunicella cavolini
(Masmoudi et al., 2016) and Paramuricea clavata (Mokhtar-Jamai
et al., 2011; Arizmendi-Mejía et al., 2015). As a result, genetic diversity
and connectivity in this group remains understudied.
Eunicella verrucosa is an IUCN red-listed octocoral. It can be found

from Angola to western Ireland, but its range in the British Isles is
limited to southwest England, southwest Wales, and southern and
western Ireland (Hayward and Ryland, 1995). In Britain, it is
considered rare due to its limited distribution beyond the southwest
(Hiscock et al., 2010), although where it is found it can be relatively
abundant and may form ‘forests’. Colonies are generally found
inhabiting rocky substrates, at depths of 10–150 m, in areas of high
turbidity with moderate to high current flow. E. verrucosa has an
important role for the functional ecology of sublittoral ecosystems in
which it occurs; it provides structural complexity and habitat for
numerous epifauna and, as such, may be considered to be an
ecosystem engineer (Hall-Spencer et al., 2007; Pikesley et al., 2016).
Colonies are also vulnerable to trawling activity and, as a result, the
designation of several MPAs across Britain includes E. verrucosa as a
specific factor (a ‘protected feature’) in their designation.
Alcyonium digitatum (‘dead man’s fingers’) has a ubiquitous

presence along rocky upper and circalittoral zones, typically to a
depth of 200 m, and it can be found around most British and Irish
coasts (Hayward and Ryland, 1995); it is represented in several MPAs
across the UK network. It is widely distributed across the North
Atlantic, ranging from Portugal to Norway, to eastern Canada, south
to Cape Hatteras in the USA (Hartnoll, 1975; Watling and Auster,
2005). It is not a protected species, however, it is locally depleted in
some areas by benthic trawling (Hinz et al., 2011). Both species are
thought to be lecithotrophic, gonochoristic (separate sexes) and
broadcast spawners, with limited reports of hermaphroditism in A.
digitatum; asexual reproduction may also be possible in E. verrucosa as
genets can proliferate via fragmentation (Hartnoll, 1975; McFadden
et al., 2001; Munro, 2004). Alcyonium digitatum releases gametes in
winter (December–January) and pelagic larvae can survive up to

14 weeks and beyond (Hartnoll, 1975). Spawning of E. verrucosa
occurs towards the end of summer (August–September), though its
pelagic larval duration is unknown (Munro, 2004). Studying patterns
in genetic connectivity and assessing genetic diversity offers an
alternative approach by which to infer the dispersal capabilities of
these species.
In this study, two panels of microsatellites (Holland et al., 2013a, b)

were used to assess the population structure and genetic connectivity
of E. verrucosa and A. digitatum around the British Isles and northeast
Atlantic. Specifically, we addressed the following questions: (i) what is
the genetic diversity of each species and is it uniform across the
sampling range; (ii) do both of these species show population genetic
structure indicative of departures from panmixia; and (iii) what are
the levels of gene flow and effective population size for each species?
Finally, we consider the conservation and potential management
implications of our findings for these species, both in terms of
connectivity between existing MPAs and with regard to the designa-
tion of future MPAs.

MATERIALS AND METHODS

Study sites and sampling
Samples of E. verrucosa (N= 922) were collected from 27 sites ranging from
southern Portugal to northwest Ireland, including sites around Brittany in
northwest France, Lyme Bay in southern England and southwest Wales
(Table 1 and Figure 1). The area sampled represents much of the northern
range of the species. Samples of A. digitatum (N= 655) were collected from 20
sites across a similar geographic area (with the exception of southern Portugal,
where the species was not found); samples from two additional sites in the
North Sea (Table 2 and Figure 1) were also included. The area sampled
represents much of the southern range of A. digitatum in Europe. Samples of
both species were collected between 2007 and 2012. The majority of samples
were collected by SCUBA at depths between 10 and 35 m; additional samples of
A. digitatum were collected by trawling (CEFAS scientific trawl, Lowestoft, UK).
Colonies of E. verrucosa were sampled by removing a 3 cm terminal branch
using sea-snips. This species is protected in UK waters, and all UK sampling
complied with licenses granted by Natural England and the Marine Manage-
ment Organisation (see Acknowledgements). Colonies of A. digitatum were
sampled by removing a 1 cm3 section of tissue from a terminal thumb-like
‘branch’ using sea-snips. After removal, individual colonies were placed into
mesh bags, brought to the surface, and quickly immersed in 95–100% ethanol
for storage. In both species, samples were taken from individual colonies spaced
at least 1 m apart to avoid sampling clones; previous studies of hard corals have
identified potential clones at spatial scales up to 5 m apart (for example,
Goffredo et al., 2009; Foster et al., 2012). This issue was also addressed after
genotyping by identifying and excluding any duplicate genotypes occurring in
the same population.

DNA extraction and microsatellite genotyping
Total genomic DNA was extracted from ~10 to 20 polyps using a WizardR SV
Genomics DNA Purification System kit (Promega, Southampton, UK) follow-
ing the manufacturer’s protocol. Polyps were removed from colonies using
forceps, or by using a scalpel to shave a portion of ~ 1 cm2 surface tissue from
A. digitatum or 1–2 cm of coenenchymal tissue (excluding the gorgonin axis)
from E. verrucosa. Microsatellites were amplified for both species and alleles
were scored using GENEMAPPER v3.7 (Applied Biosystems, Paisley, UK). Full
details of DNA extraction and microsatellite amplification conditions and
multiplexing are given in a primer note for each species: E. verrucosa (Holland
et al., 2013a) and A. digitatum (Holland et al., 2013b).

Data screening and quality assessment
Duplicate genotypes were identified in CERVUS v3.0.3 (Kalinowski et al., 2007)
and were removed from further analyses. The presence of possible null alleles,
allele scoring errors due to stuttering and large allele dropout was evaluated
using MICRO-CHECKER v2.2.3 (Van Oosterhout et al., 2004). Linkage
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disequilibrium and deviation from Hardy–Weinberg equilibrium (HWE) were
tested in GENEPOP v4.2 (Rousset, 2008) using default parameters and the false
discovery rate was used to detect type-1 errors (Storey and Tibshirani, 2003).
To identify candidate markers under selection or linked with markers under
selection, loci were screened using two different FST outlier detection methods
in Lositan (Antao et al., 2008) and Arlequin v3.5.2 (Excoffier and Lischer,
2010). Lositan assumes an island model and runs were conducted using the
infinite alleles model. Parameters were set to 50 000 simulations, a 99%
confidence interval and a false discovery rate of 0.1, with the neutral and forced
mean FST enforced. In Arlequin, 50 000 simulations were run with 100 demes
simulated per group and 10 simulated groups under the hierarchical island
model. Samples were grouped by geographical region (E. verrucosa: Portugal,
France, Ireland, Britain; A. digitatum: France, Ireland, Britain, North Sea) and
results were considered significant if the P-value was o0.010.

Genetic variation
Expected heterozygosity (Hexp) and the inbreeding coefficient (FIS) for each
population were estimated using the diveRsity package (Kennan et al., 2013) in
R (R Development Core Team, 2016). The divBasic function was used and FIS
significance was assessed using 95% confidence intervals using 1000 bootstrap
replicates; the significance level for multiple comparisons was corrected using a

Bonferroni correction (Dunn, 1961), which had the effect of slightly widening
each interval. Allelic richness (Ar) and private allelic richness (PAr) were
calculated in HP-RARE v1.1 (Kalinowski, 2005) using a rarefaction method, which
accounts for variation in sample size (each sample included a minimum of
eight loci).

Population structure
Population differentiation was analysed using pairwise FST (Weir and
Cockerham, 1984) and G”ST (Meirmans and Hedrick, 2011) measures using
the diffCalc function in diveRsity, and significance was assessed as for FIS. To
search for genetic structuring, a principal coordinates analysis (PCoA) was
performed using a matrix of codominant genotypic genetic distances in
GenALEx v6.5 (Peakall and Smouse, 2012). An analysis of molecular variance
(AMOVA) was performed using Arlequin (10 000 permutations) to test for
differentiation amongst geographical regions. Population structure was also
analysed using a Bayesian clustering method: STRUCTURE v2.3.4 (Pritchard et al.,
2000), using a burn-in of 104 and 106 repetitions. An admixture ancestry model
using population IDs as priors and correlated allele frequencies was chosen. To
determine the number of populations (K), the delta K statistic (Evanno et al.,
2005) and the mean value of L(K) were examined in the POPHELPER R package
(Francis, 2017). Ten replicate runs were aligned and merged in POPHELPER using

Table 1 Sampling information and summary statistics for Eunicella verrucosa samples

Region/Population Code N Ng Depth (m) Lat Long Hexp Ar PAr FIS

Britain
aIsles of Scilly, Flat Ledge Fla 23 23 30 49.97 −6.26 0.392 2.45 0.017 −0.021
aIsles of Scilly, Lion Rock Lio 22 22 24 49.98 −6.31 0.435 2.66 0.017 0.016
aLundy Island Lun 23 (1) 22 23 51.17 −4.69 0.428 2.61 0.038 0.032
bLyme Bay, The Heroine Wreck Her 9 9 25 50.68 −2.94 0.432 2.79 0.044 0.006
bLyme Bay, Sawtooth Ledges Saw 12 12 22 50.68 −2.80 0.383 2.43 0.023 0.106
bLyme Bay, West Tennents Reef Wte 45 (2) 43 23 50.65 −2.96 0.452 2.74 0.028 0.052
aManacles, Raglan Rocks Rag 44 (1) 43 28 50.04 −5.04 0.438 2.64 0.036 0.017
aManacles, SS Mohegan Wreck Moh 30 30 26 50.05 −5.04 0.409 2.52 0.015 0.140

Porthallow Bay, Volnay Wreck Vol 24 24 21 50.07 −5.00 0.401 2.51 0.023 0.002
aPadstow, Camel Estuary Cam 11 (3) 7 n/a 50.59 −4.95 0.433 2.71 0.001 −0.202

Plymouth, Bovisand Bov 40 40 10 50.34 −4.13 0.423 2.54 0.020 0.086

Plymouth, Hand Deeps Han 36 36 25 50.21 −4.34 0.459 2.76 0.018 0.062

Plymouth, Mewstone Mew 45 (1) 44 24 50.30 −4.11 0.451 2.65 0.027 0.045
aSkomer Island Sko 39 39 22 51.74 −5.30 0.445 2.61 0.013 −0.013

Ireland
Donegal, Black Rock Bla 29 29 25 54.58 −8.43 0.367 2.38 0.034 −0.013

Sligo, Thumb Rock Thu 48 48 20 54.47 −8.44 0.376 2.46 0.071 0.097

France
Brittany, Rade de Brest Bre 43 43 35 48.31 −4.42 0.412 2.55 0.026 0.047

Brittany, Laonegued Taer Lao 40 40 30 47.73 −4.06 0.419 2.56 0.059 0.082

Brittany, Men Goe Men 43 43 30 47.69 −3.99 0.418 2.54 0.035 0.055

Brittany, Roscoff1 Ros1 40 40 35 48.75 −3.96 0.419 2.56 0.024 0.014

Brittany, Roscoff2 Ros2 39 (3) 36 25 48.71 −3.90 0.448 2.68 0.049 0.071

Portugal
Algarve, Portimao1 Por1 42 42 17 37.10 −8.58 0.429 2.63 0.038 0.128

Algarve, Portimao2 Por2 36 (1) 35 18 37.10 −8.56 0.435 2.63 0.058 0.105

Algarve, Armacao de Pera1 Arm1 27 27 28 37.09 −8.35 0.402 2.53 0.041 0.096

Algarve, Armacao de Pera2 Arm2 44 (1) 43 21 37.05 −8.35 0.392 2.47 0.025 0.028

Algarve, Armacao de Pera3 Arm3 44 (3) 41 25 37.04 −8.36 0.406 2.52 0.039 0.067

Algarve, Faro Far 44 44 17 36.98 −7.99 0.402 2.53 0.033 0.091

Abbreviation: CI, confidence interval.
Number of individuals genotyped per population (N) (with number of duplicate genotypes), number of unique genotypes per population (Ng), expected heterozygosity (Hexp), allelic richness (Ar),
private allelic richness (PAr) and the inbreeding coefficient (FIS) are reported for each population. FIS values significantly different from zero (95% CI) are highlighted in bold.
aMarine Conservation Zone.
bCandidate Special Area of Conservation.
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CLUMPP and graphics were generated using the merged data. Initial runs for
both species using K values 1–10 showed a very low likelihood for K values
6–10, therefore, subsequent runs included only K values of 1–5. A Mantel test
was implemented in GenALEx to test whether any observed genetic structure
was a product of IBD. Genetic distances were supplied as FST/(1- FST) matrices
and were compared with the logarithm of geographic distances (km). Negative
FST values were converted to zero for this analysis. Geographical distances were
estimated in Google Earth by measuring the shortest in-water distance between
sites in a straight line or by calculating the shortest distance following coastlines.

Gene flow and effective population size
Contemporary (within the last few generations) and historical gene flow was
estimated using two methods. Contemporary gene flow was analysed using
BayesAss v3.0.4 (Wilson and Rannala, 2003), which estimates the fraction of
immigrants in a population using Bayesian inference. Three runs were
performed using 107 iterations, a burn-in of 106 and a sampling interval of
100, and an average of the gene flow estimates was calculated. The mixing
parameters DeltaA, DeltaF and DeltaM were set to 0.10, 0.20 and 0.05
for E. verrucosa, and 0.30, 0.50 and 0.10 for A. digitatum, respectively.
Convergence of the chains was validated using Tracer v1.6 (Rambaut et al.,
2014). Historical gene flow was calculated using the mutation-scaled migration
rate M (m/μ; where m is the immigration rate per generation) and the
population parameter theta (4Ne*μ) in Migrate-n v3.6 (Beerli and Felsenstein,
2001). Migrate-n is a coalescence-based program that has the benefit of

providing values of immigration and emigration for each population and is
therefore useful in scenarios of asymmetrical migration. A Brownian motion
model was used and assumed a migration matrix with variable theta and
estimated mutation rates for loci based on the data. A Bayesian likelihood
strategy was initially run with default parameters to obtain start parameter
estimates for theta and M. These parameters were supplied to the program in
subsequent runs and the number of recorded steps was increased to 50 000.
Prior uniform distributions for theta andM were set to min= 0, max= 100 and
delta= 10, and min= 0, max= 1000 and delta= 100, respectively. To evaluate
convergence of the chains, the effective sample size (41000) and the shape of
the histograms in the output files were examined.
Migrate-n was also used to calculate the mutation-scaled effective population

size (Ne). This was calculated from the optimum value of theta using the
equation Ne= theta/4 μ, assuming a microsatellite mutation rate (μ) of
10− 4 per generation, as used in a previous study of a Mediterranean cup coral
(Casado-Amezú et al., 2012). Contemporary Ne was estimated using LDNE
v1.31 (Waples and Do, 2008). The program was run assuming a model of
random mating and the allowed frequency of observed alleles was set to 0.050.

RESULTS

Data screening and quality assessment
For E. verrucosa, based on evidence of null alleles and significant
deviation from HWE, one locus (Ever009) was omitted from the
original microsatellite panel of Holland et al. (2013a). Five other loci

Figure 1 Map of the sites sampled in the northeast Atlantic. Pink circles represent sites where only Eunicella verrucosa were collected and blue circles
represent where only Alcyonium digitatum were collected. Circles containing both colours represent sites in which both E. verrucosa and A. digitatum were
collected. See Table 1 for details on population codes, sample size and latitude and longitude.
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also showed some deviation from HWE, however, departures from
HWE occurred in only a few populations and these loci were retained.
Similarly, linkage disequilibrium was detected in five populations,
but each population showed different pairs of potentially linked loci.
With no obvious trend in the pattern of linkage disequilibrium
observed, this inconsistency was likely due to site-specific biological
processes which we were not able to investigate further within this
study; consequently, no loci were discarded on the basis of linkage
disequilibrium and 13 were used for subsequent analyses. For
A. digitatum, three loci (Adig003, Adig004 and Adig010) were
discarded from the original microsatellite panel of Holland et al.
(2013b) based on the presence of null alleles and significant deviations
from HWE. Some evidence of linkage disequilibrium was also
detected, but was minimal across populations and no further loci
were omitted; eight loci were used for subsequent analyses.
A relatively low number of duplicate genotypes were identified in

both species. In E. verrucosa, 17 individuals with duplicate genotypes
were identified in nine samples (Table 1), while in A. digitatum, seven
individuals with duplicate genotypes were identified in five samples
(Table 2). Duplicates were removed from further analyses. The spread
of duplicates across sites did not show any obvious pattern in either
species, with the exception of a small sample of E. verrucosa (Cam)
from north Cornwall, in which four duplicate individuals (across three
genotypes) were identified out of a sample of only 11 individuals
successfully genotyped.
E. verrucosa samples were monomorphic at several loci, but this was

not consistent in all populations at the same locus. In comparison,
A. digitatum was monomorphic at only one locus (Adig007) in three

populations. For E. verrucosa, two loci (Ever013 and Ever014) were
identified as outliers under the island model and one (Ever013) under
the hierarchical island model (Supplementary Appendix 1). Accord-
ingly, as both methods identified Ever013 as an outlier under positive
selection, analyses of population structure, gene flow and effective
population size excluded this locus; STRUCTURE, PCoA and BayesAss
analyses were conducted using 13 loci as the assumptions of these
methods are not violated by the inclusion of loci under selection
(Pritchard et al., 2000; Wilson and Rannala, 2003). One outlier locus
(Adig006) was identified for A. digitatum by the island model, but not
by the hierarchical island model (Supplementary Appendix 1);
accordingly, eight loci were retained.

Genetic variation
After removal of duplicate genotypes, genotypes of 905 individual
specimens of E. verrucosa from 27 sites were analysed at 13 loci. For
A. digitatum, genotypes of 648 individual specimens from 20 sites were
analysed at eight loci. For E. verrucosa, measures of Hexp ranged from
0.367 (Black Rock) to 0.459 (Hand Deeps) and were generally
consistent within regions, with minor differences between some
regions (Table 1). A similar pattern was observed for Ar, which
ranged from 2.38 (Black Rock) to 2.79 (The Heroine Wreck); overall,
both measures were slightly lower in the samples from Ireland. For
A. digitatum, Hexp and Ar measures were also relatively uniform within
and between regions (Table 2) and were consistently higher than for
E. verrucosa; Hexp measures ranged from 0.594 (The Lucy Wreck) to
0.668 (Norfolk) and Ar ranged from 3.99 (Laonegued Taer) to 4.34
(Roscoff2). Private allelic richness (PAr) was also consistently higher

Table 2 Sampling information and summary statistics for Alcyonium digitatum samples

Region/Population Code N Ng Depth (m) Lat Long Hexp Ar PAr FIS

Britain
aIsles of Scilly, Seven Stones Reef Sev 40 40 35 50.03 −6.12 0.624 4.12 0.162 0.055

aIsles of Scilly, Trenemene Reef Tre 42 42 32 49.87 −6.39 0.598 4.07 0.133 0.003
aLundy Island Lun 36 36 23 51.20 −4.68 0.618 4.15 0.098 0.023
bLyme Bay, Frognor Wreck Fro 18 18 34 50.53 −2.55 0.626 4.25 0.193 0.042
bLyme Bay, UB74 Wreck Ub74 19 19 34 50.53 −2.56 0.635 4.18 0.130 0.034
aManacles, Carn-du-rocks Cdr 35 (2) 33 26 50.05 −5.05 0.636 4.21 0.122 0.007

Porthallow Bay, Volnay Wreck Vol 28 28 21 50.07 −5.00 0.659 4.31 0.099 −0.001
aSkomer Island, The Lucy Wreck Luc 23 (1) 22 35 51.74 −5.28 0.594 4.01 0.075 0.027
aSkomer Island, Payne’s Rock Pay 51 51 30 51.74 −5.31 0.637 4.17 0.109 0.025
aSkomer Island, Tusker Rock Tus 21 21 29 51.74 −5.26 0.629 4.22 0.189 0.031

Swanage, Betsy Anna Wreck Bet 26 (2) 24 23 50.62 −1.83 0.620 4.07 0.085 0.024

North Sea, Humberside Hum 27 27 25 53.64 1.55 0.618 4.08 0.120 −0.014

North Sea, Norfolk Nor 33 33 25 53.28 1.58 0.668 4.29 0.106 0.059

Ireland
Mayo, Inishturk Island Ini 48 48 27 53.72 −10.12 0.625 4.13 0.118 0.038

Sligo, Thumb Rock Thu 18 18 15 54.47 −8.44 0.655 4.24 0.156 −0.058

France
Brittany, Rade de Brest Bre 43 43 35 48.34 −4.58 0.645 4.23 0.134 0.068

Brittany, Laonegued Taer Lao 29 29 30 47.73 −4.06 0.595 3.99 0.133 0.053

Brittany, Men Goe Men 35 (1) 34 30 47.69 −3.99 0.653 4.22 0.087 0.063

Brittany, Roscoff1 Ros1 41 41 35 48.75 −3.96 0.635 4.23 0.199 0.035

Brittany, Roscoff2 Ros2 42 (1) 41 25 48.71 −3.90 0.649 4.34 0.117 0.062

Abbreviation: CI, confidence interval.
Number of individuals genotyped per population (N) (with number of duplicate genotypes), number of unique genotypes per population (Ng), expected heterozygosity (Hexp), allelic richness (Ar),
private allelic richness (PAr) and the inbreeding coefficient (FIS) are reported for each population. FIS values significantly different from zero (95% CI) are highlighted in bold.
aMarine Conservation Zone.
bCandidate Special Area of Conservation.
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for A. digitatum than for E. verrucosa; values for A. digitatum ranged
from 0.075 (The Lucy Wreck) to 0.193 (Roscoff1), while values for
E. verrucosa were between 0.001 (Camel Estuary) to 0.059 (Laonegued
Taer). The majority of FIS values for both species were positive;
overall, however, few were significant, though generally at least one
site in each region showed a significant positive FIS coefficient
(Tables 1 and 2). This finding suggested a deficiency of heterozygotes
at some sites; for E. verrucosa, this was most apparent in several
populations from Portugal, while both species showed significant,
positive FIS values at Roscoff2. The broader implications of these
findings (inbreeding and/or a Wahlund effect caused by the inad-
vertent combining of data from separate populations) are discussed
below. A small sample of E. verrucosa from the Camel Estuary (Cam)
had a significantly negative FIS, indicating an excess of heterozygotes at
this site.

Population structure
Global FST and G”ST measures across all populations of E. verrucosa
were 0.012 and 0.023, respectively (Supplementary Appendix 2).
In comparison, global FST and G”ST measures for all populations
of A. digitatum were lower (0.003 and 0.011, respectively)
(Supplementary Appendix 2). For both species, global values were
significantly different from zero.

For E. verrucosa, the largest significant pairwise FST (0.059) value
was observed between Faro and the Camel Estuary, while the highest
significant pairwise G”ST (0.089) value observed was also between
populations from Portugal and southwest Britain: Portamao2 and the
Heroine Wreck (Supplementary Appendix 2). In contrast, the highest
significant pairwise FST and G”ST values (0.020 and 0.058, respectively)
for A. digitatum were between populations from southwest Britain and
the North Sea: Trenemene Reef and Norfolk (Supplementary
Appendix 2). For both species, both pairwise measures were typically
low and non-significant within regions and between populations from
Britain and France. For A. digitatum, only pairwise comparisons with
North Sea populations were significant. However, for E. verrucosa,
many pairwise comparisons between Portugal populations and popu-
lations from Britain, Ireland and France were significantly different
from zero.
The PCoA suggested regional structure in E. verrucosa (Figure 2a),

with evidence for three clusters: Portugal, Ireland, and populations
from Britain and France. In contrast, little evidence of regional
structure was apparent in A. digitatum (Figure 2b). There was some
evidence for the isolation of the North Sea and UB74 Wreck
populations of A. digitatum; however, genetic structure did not appear
wholly concordant with geography, as the North Sea populations did
not group together.
For the AMOVA, populations were grouped by geographical region

for each species: Portugal, France, Ireland and Britain (E. verrucosa)
and France, Ireland, Britain, and the North Sea (A. digitatum). In
both species, global tests revealed that the majority of variation
was explained by variation within populations (Supplementary
Appendix 3). For E. verrucosa, a small but highly significant amount
of variation was explained by differences between the geographical
regions (FCT= 0.016, Po0.001). Similarly, a significant (but much
smaller) amount of variation was explained by differences between
regions for A. digitatum (FCT= 0.001, P= 0.049).
For E. verrucosa, both the mean L(K) and delta K statistics indicated

K= 3 as the most probable number of discrete populations within the
data set (Supplementary Appendix 4). STRUCTURE analysis (Figure 3a)
identified essentially the same groupings as observed in the PCoA
(Figure 2a), but also indicated that all E. verrucosa colonies from
France (and a few from Britain) shared some allelic similarities with
E. verrucosa from Portugal. To explore potentially finer-scale popula-
tion structure (o500 km distance between sites) in populations from
Britain and France, a hierarchical STRUCTURE analysis was conducted
using data from only these regions. The most likely number of
populations was identified as K= 2 (Supplementary Appendix 4),
which revealed moderate structure partitioned between E. verrucosa
populations from Britain and those from France, with some evidence
of allelic variants more typical of E. verrucosa from France occurring in
samples from Britain (Figure 3b). In contrast, for A. digitatum, the
mean L(K) suggested panmixia (K= 1; Supplementary Appendix 4).
Analysis of delta K for A. digitatum suggested K= 2; however, the delta
K method is known to be unsuitable for accurately identifying K when
K= 1 (Evanno et al., 2005).
Analysis of pairwise genetic and geographic distances between

sample sites showed a moderate, significant correlation for E. verrucosa
(r2= 0.348, P= 0.001; Figure 4a). The correlation was much weaker
but remained significant when the samples from Portugal were
excluded from the analysis (r2= 0.083, P= 0.004; Supplementary
Appendix 5). Similarly, the correlation remained significant when
the samples from Portugal and Ireland were excluded from the
analysis (r2= 0.077, P= 0.003) (Supplementary Appendix 5). For
A. digitatum, a weak, but similarly significant correlation between
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genetic and geographic distances was apparent (r2= 0.045, P= 0.035;
Figure 4b); however, removal of the North Sea samples resulted in no
correlation (r2o0.001, P= 0.463; Supplementary Appendix 5). Ana-
lysis of both species was also carried out using G”ST as the
genetic distance; for E. verrucosa the result was similar to that obtained
using FST (Supplementary Appendix 5), however, for A. digitatum,
the correlation was lower and non-significant (Supplementary
Appendix 5).

Gene flow and effective population size
To estimate gene flow, samples of both species were classified by
geographical region as per the AMOVA groupings. Contemporary
gene flow estimates (using BayesAss) for both species indicated that
the majority of gene flow originated from sample sites within regions
(Figure 5). However, for both species, where some gene flow between
regions was detected, populations in southwest Britain were the
predominant source of exogenous allelic variants. For E. verrucosa,
gene flow from Britain was predominantly into France, whereas in
A. digitatum gene flow from southwest Britain into the North Sea,
Ireland and France was observed. In comparison, contemporary
gene flow into Britain appeared very limited for both species. For
E. verrucosa, little genetic material was exchanged between Ireland
and any other region; likewise, gene flow to/from Portugal was
minimal, except for some minor gene flow from Portugal into France.
Little or no gene flow from France was detected, suggesting that
E. verrucosa in both France and Ireland are effectively sinks. In
contrast, for A. digitatum, some gene flow from France to other
regions was apparent, although gene flow from the North Sea and
Ireland to other study areas was all but absent. For both species,
estimates of historical gene flow (using Migrate-n) were somewhat
more complex, with populations from Britain again acting as the main
source of gene flow for both species, and with only limited gene flow
into southwest Britain (Figure 5). Overall, historically, there appeared
to have been considerably more gene flow between all regions.
Analyses of Ne were run using the same groupings as used in the

gene flow analyses. Estimates of contemporary effective population
sizes were infinite for both species (Supplementary Appendix 6).
Historical effective population sizes for E. verrucosa indicated that
samples from Britain had the largest Ne, followed by those from

Figure 3 STRUCTURE analysis for Eunicella verrucosa using all populations (a) and hierarchical STRUCTURE analysis using populations from only Britain and
France (b). The colours in the STRUCTURE plots correspond to genetic clusters, in which each individual is represented as a coloured vertical bar that
represents that individual’s membership in each cluster. See Table 1 for details on population codes.

Figure 4 Relationship between genetic distance and geographic distance for
Eunicella verrucosa (a) and Alcyonium digitatum (b).
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Ireland, France and Portugal. In contrast, for A. digitatum, estimates of
historical Ne in Ireland and the North Sea were by far the largest, being
more than six times larger than the Ne for E. verrucosa in Britain.
Estimates of Ne for A. digitatum from Britain and France were, in
contrast, very small.

DISCUSSION

This study demonstrates that regional population structure is apparent
in the octocoral species E. verrucosa sampled from sites around the
northeast Atlantic, including northwest Ireland, southwest Britain,
northwest France and southern Portugal. However, over a similar
spatial area, another temperate octocoral, A. digitatum, showed only
very limited population structure. Therefore, despite the similarities in
habitat and life histories of these octocorals, patterns of genetic
connectivity over approximately the same geographical area appear
variable between species within Octocorallia. The implications of and
possible causes for these apparent differences –differences in gene flow
and/or effective population size– are now considered.

Genetic diversity and inbreeding
Genetic diversity measures (Hexp and Ar) were generally uniform
across the sampling ranges of each species (Tables 1 and 2); however,
higher estimates of both measures in A. digitatum indicated higher
genetic diversity in this species than in E. verrucosa. In comparison to
other studies of temperate corals (Table 3), the genetic diversity of

A. digitatum observed in the current study was higher than or
comparable to that reported in the octocorals Eunicella singularis
(Costantini et al., 2016) and E. cavolini (Masmoudi et al., 2016), and
the stony coral Astroides calycularis (Casado-Amezú et al., 2012), but
less than two other Mediterranean octocorals, Corallium rubrum
(Ledoux et al., 2010) and Paramuricea clavata (Mokhtar-Jamai et al.,
2011). In contrast, E. verrucosa exhibited the lowest genetic diversity, a
finding that may be explained by both biological/ecological and genetic
methodology factors: one highly variable locus, Ever009, which
exhibited nine alleles when originally developed (Holland et al.,
2013a), was excluded from the current analysis due to the presence
of null alleles. At the same time, while the low diversity statistics reflect
low polymorphism at some E. verrucosa loci, reduced polymorphism
may itself have been the product of an overall lower level of genetic
diversity within the populations studied: at four loci (Ever005,
Ever008, Ever011 Ever012) only two or three alleles were detected
during initial testing (Holland et al., 2013a), with a maximum of five
alleles detected at these loci in the current study. The precise
biological/ecological causes of this low genetic diversity (for example,
inbreeding, selection) remain to be determined. Overall, differences in
the patterns of genetic diversity (Hexp and Ar) detected between the
two species studied were markedly consistent and may, at least in part,
be explained by higher genetic connectivity in A. digitatum.
Eunicella verrucosa has previously been reported as having a low

dispersal potential (Munro, 2004); if correct, this would increase

Figure 5 Gene flow diagrams for Eunicella verrucosa and Alcyonium digitatum. Contemporary gene flow estimates were derived from BayesAss and historical
gene flow estimates were calculated using Migrate-n. Colours correspond to regions: Britain (red), France (blue), Ireland (green), Portugal (orange), the North
Sea (purple). The direction of an arrow represents the direction of gene flow from one region to another. The width of the arrows denotes the relative amount
of gene flow within the scenario being explored (that is, the wider the arrow, the more gene flow). The ‘humps’ in the estimates of contemporary gene flow
represent gene flow originating from sample sites within regions. Patterns for each diagram are independent, that is, similar widths of arrows or humps do not
represent the same amount of gene flow across each of the four diagrams (see Supporting Appendix 6 for exact gene flow estimates).

Octocoral population structure and connectivity
LP Holland et al

8

Heredity



the potential for inbreeding. However, the findings of Munro
(2004) were based on analysis of only four isoenzymes, markers
notorious for their lack of resolution compared to more modern
PCR-based techniques (for example, Stevens and Tibayrenc, 1995)
and the range and limited number of significant inbreeding
coefficients (FIS) observed for E. verrucosa in the current study
suggests that the frequency of inbreeding is low, variable between
sites and likely due to site-specific factors. Regarding the use of FIS,
while the coefficient is typically referred to as measuring the degree
of inbreeding within a population, it actually measures homo-
zygosity excess relative to Hardy-Weinberg expectations, and other
processes, for example, the inadvertent combining of data from
populations with different allele frequencies (the so called ‘Wah-
lund effect’) can also drive significant positive FIS results. Such a
consideration is relevant when seeking to explain the higher
number of significant positive FIS values obtained for E. verrucosa
populations (Table 1), as this species showed considerably more
evidence of genetic structuring (Figure 2a, Supplementary
Appendix S2b) than did A. digitatum (Figure 2b, Supplementary
Appendix S2d) across the range studied. Thus, given the higher
proportion of significant between-population pairwise FSTs
(Supplementary Appendix S2b) observed for E. verrucosa, it is
possible that cryptic intra-population genetic differentiation may
also have played a role in driving significant FIS values in this
species. If our FIS results (especially for E. verrucosa) were due to
Wahlund effects, such findings would suggest even less inbreeding
within the species than the small amount currently postulated.
Additionally, the generally low FIS values observed also accord with
the low proportion of duplicate genotypes detected in E. verrucosa
(o2%) across the study; the number of E. verrucosa individuals at a
site with duplicate genotypes ranged from 0 (most samples) to 4 in
a small sample (Cam, N= 11) from north Cornwall. Interestingly,
the north Cornwall sample was one of the few samples not
collected by our dive teams, and the relatively high proportion of
duplicate genotypes at this site may be a reflection of sampling
practice rather than biological reality.
For A. digitatum, significant FIS coefficients were even fewer and

lower (though still positive), suggesting only very limited inbreeding in
this species; likewise, only a very low proportion (~1%) of all
individual A. digitatum successfully genotyped had duplicate profiles.
While such findings might be expected for broadcast spawning corals
(Ayre and Hughes, 2000), exceptions to this pattern are not
uncommon; for example, Combosch and Vollmer (2011) studied
populations of Pocillopora damicornis, a broadcast spawning tropical
reef coral, and reported a range of large, mostly positive, significant
inbreeding coefficients (FIS range: − 0.048–0.421), leading them to
conclude that widespread inbreeding was apparent in this species in
the eastern Pacific.
Compared to previous population genetics studies in octocoral

species (for example, Ledoux et al., 2010; Mokhtar-Jamai et al., 2011),
the number of significant FIS estimates reported here for E. verrucosa
and A. digitatum is globally low: ten significant FIS estimates at 27 sites
for E. verrucosa (Table 1) and four significant FIS estimates at 20 sites
for A. digitatum (Table 2). Overall, such low estimates of FIS,
considered together with the very low numbers of identical individuals
sampled in both species, is suggestive of low levels of inbreeding in
these two species of octocoral in these parts of their respective ranges.

Genetic structure and connectivity
Population genetic structure was apparent for E. verrucosa at a regional
spatial scale (500–2000 km between sample sites), suggestingT
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restrictions to gene flow between populations in different geographical
regions. This finding was also supported by analyses of contemporary
gene flow (though less so historically), as demonstrated by the limited
exchange of genetic material between regions, except for some gene
flow between Britain and France (o500 km distance between sites;
Figures 3b and 5). Indeed, in both species, analysis of contemporary
gene flow suggested that the majority of gene flow occurred between
sites within geographical regions, as also observed in Paramuricea
clavata, a Mediterranean octocoral (Arizmendi-Mejía et al., 2015).
In contrast to E. verrucosa, little regional structure was apparent in
A. digitatum, and the only significant differentiation detected was
between the samples from the North Sea and those from more
westerly areas (4550 km distance between sites); this differentiation
appeared to be the product of IBD (as evidenced when comparing
the results of IBD analysis with and without North Sea samples of
A. digitatum; see Figure 4b and Supplementary Figure S5b) and/or a
barrier between the samples of western origin and those from the
North Sea. Estimates of contemporary effective population size (Ne)
were infinite for both species (Supplementary Appendix 6). Assuming
these estimates to be accurate, we found no evidence for disequili-
brium caused by genetic drift due to a finite number of parents and,
thus, any disequilibrium observed was due to sampling error (Waples
and Do, 2008). In contrast, estimates of historical effective population
sizes were smaller and variable between regions (Supplementary
Appendix 6); this result, together with findings from the correspond-
ing analyses of historical and contemporary gene flow (Figure 5)
suggest historical patterns of connectivity were not the same as those
observed today.
Overall, our findings suggest that A. digitatum is panmictic across

the western part of the sampled range. One possible explanation for
this apparent panmixia is that the winter spawning of A. digitatum may
facilitate longer dispersal distances via wind-driven currents, thereby
increasing genetic connectivity in the eastern Atlantic. Panmixia across
similar spatial scales has been reported previously in other marine taxa,
including cuttlefish (Wolfram et al., 2006; microsatellite-based study),
sea stars (Baus et al., 2005; AFLP-based study), and a closely related
species, Alcyonium hibernicum (McFadden, 1999; isoenzyme-based
study), although in the latter study, in which little or no genetic
variation was detected in A. hibernicum across the Atlantic, McFadden
(1999) also linked her findings to high levels of asexual reproduction
by parthenogenesis. Similarly, a recent broad study by Gagnaire et al.
(2015) highlights the potential impact of large effective population size
as an alternative explanation to contemporary panmixia in acting to
limit genetic drift, thereby constraining the development of genetic
structure, even where gene flow is restricted.
For E. verrucosa, populations from Portugal were differentiated

from the majority of populations north of the Bay of Biscay. This
may represent a natural break in gene flow in which genetic drift
either side of the break is the primary driver of population
structure; such a conclusion is supported by both the multivariate
(PCoA) and Bayesian clustering (STRUCTURE) analyses. This pattern
has been reported previously in a number of taxa, including
bivalves (Arias et al., 2010), brittlestars (Muths et al., 2009),
crustaceans (Papetti et al., 2005; Remerie et al., 2009), micro-
turbellarians (Casu et al., 2011), macroalgae (Neiva et al., 2014) and
fish (Milano et al., 2014). However, the significant correlation
between genetic and geographic distances in E. verrucosa in the
current study indicates that a proportion of the differentiation
observed is likely explained by IBD. Further analysis omitting the
Portugal populations suggested that IBD explains some of the
genetic differentiation observed between Portugal and all other

populations, but much less of the differentiation observed between
Britain, Ireland and France. Interestingly, comparisons with other
temperate corals (Table 3) suggest that contemporary patterns of
population structure appear often to be driven, at least in part, by
IBD, which is possibly due to their sedentary life history and their
lack of or shorter pelagic larval duration compared to other benthic
marine species. In E. verrucosa, analysis of IBD showed no change
in significance when the samples from Ireland were removed
(Supplementary Appendix 5 and Supplementary Figure S5b),
indicating IBD to be a less important driver of population
structuring in these Irish samples; such a finding suggests genetic
differentiation of these range-peripheral populations is more likely
driven by other factors, for example, barriers to gene flow and
genetic drift and/or selection. Several previous studies of inverte-
brates sampled from across this region have also reported genetic
differentiation in western Ireland compared to other locations in
the northeast Atlantic (Remerie et al., 2009; Casu et al., 2011).
These studies attributed this differentiation to recolonisation from
relatively northerly refugia that persisted in ice-free coastal areas
during the last glacial maximum; however, while Casu et al.
explained their findings (reduced genetic diversity in more north-
erly recolonized populations) by reference to founder effects and
low numbers of recolonisers (Hewitt, 1996,1999), Remerie et al.
postulated the higher genetic diversity and heterogeneity they
observed in glaciated areas to be suggestive of range persistence
during the last glacial maximum. Our findings for E. verrucosa from
Ireland (which exhibited the lowest genetic diversity detected in
our entire study [Hexp, Ar]) are in line with those of Casu et al.
(2011) and, likewise, are suggestive of founder effects following
post-glacial recolonisation of suitable northerly habitats by small
numbers of recolonisers (Nichols and Hewitt, 1994). A lack of
sampling at the southern-most limits of the range of E. verrucosa
also makes it difficult to infer the precise origins of the populations
in northwest Ireland, as gaps in our knowledge concerning the
genetic identity of all possible source populations limits the
accuracy of any putative recolonisation hypotheses. Furthermore,
to what degree the contemporary distribution of E. verrucosa
reflects the extent of the species at the last glacial maximum is
unknown, but, to date, its distribution appears not to have
extended to areas known to be under ice during the last glacial
maximum (Hayward and Ryland, 1995; Hewitt, 1996). In contrast,
the distribution of A. digitatum in the northeast Atlantic does not
show the same pattern and its present day distribution is con-
siderably more northerly, extending from northern Iberia and the
Bay of Biscay up to Iceland and Norway (Hayward and Ryland,
1995). Another possible explanation for the differentiation
observed in E. verrucosa from Ireland in the current study is that
the effect of selection may be sufficiently strong in northwest
Ireland to mitigate the homogenising effect of gene flow. The
populations of E. verrucosa found in northwest Ireland are known
to be peripheral and inhabit the most northerly limits of the species
range (Hayward and Ryland, 1995). Moreover, the lower measures
of expected heterozygosity and allelic richness observed in both
Irish samples are characteristic of marginal populations, which
typically have reduced genetic diversity and can often be under
intense selection pressures (Johannesson and André, 2006); our
tests for selection identified at least one locus under positive
selection. At this stage, however, we do not know which selection
pressures, if any, may be acting on these most northerly popula-
tions of pink sea fan.
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In contrast to the patterns observed between regions, our findings
for both octocoral species suggested high gene flow and/or large
effective population sizes within regions. For example, for E. verrucosa,
little differentiation was observed between the two most distant
populations within Britain (Sawtooth and Skomer), implying that
the transfer of genetic material can potentially occur up to distances of
~ 480 km. For A. digitatum, gene flow was evident at an even larger
spatial scale, suggesting that genetic material can be transferred greater
distances, potentially more than 1050 km (Payne’s Rock—Norfolk).
These results suggest that genetic connectivity is high at an intra-
regional scale in both species. However, as observed in many marine
species with similar life history traits, large effective population size
can also act to reduce (or eliminate) genetic structure, sometimes even
in situations were gene flow is limited (Gagnaire et al., 2015). Thus, in
postulating high gene flow within regions, we need to be mindful of
the potential effects of large effective population sizes on genetic
structure (or lack of) in these two species.
The hierarchical analysis of E. verrucosa population structure

revealed a small degree of genetic differentiation between populations
in southwest Britain and northwest France at a distance (~200 km) less
than that separating some British populations; however, minimal
differentiation was evident for A. digitatum across this area. The effects
of mid-channel currents and local near-shore eddies (Dauvin, 2012)
on cross-channel larval migration remains to be explored, although
previous research has identified a potential genetic break around
western Brittany in a number of taxa, including polychaetes (Jolly
et al., 2005), nematodes (Wielgoss et al., 2008) and bivalves (Becquet
et al., 2012). In this study, the contrast in genetic connectivity across
the English Channel may result from differences in the reproductive
biology of the two study species. The pelagic larval duration of
E. verrucosa is not known, however, evidence from this study suggests
this could be shorter than the pelagic larval duration for A. digitatum.

Conservation implications and MPAs
Eunicella verrucosa has been listed under the IUCN red list Vulnerable
A1d category since 1996, and is recognised as a species facing a high-
to medium-term extinction risk due to exploitation (International
Union for Conservation of Nature and Natural Resources (IUCN),
2017). It is also listed as a priority species under the UK Biodiversity
Action Plan, the UK response to the prevention of biodiversity loss
called for by the 1992 Convention on Biological Diversity; in the
Republic of Ireland, France and Portugal it does not currently receive
any additional protection beyond its IUCN listing. Several of the
MCZs recently designated around southwest Britain (for example,
Chesil Beach and Stennis Ledges, The Manacles, and The Isles of
Scilly) specifically identify E. verrucosa as a Protected Feature in their
designation listing, and 60% of E. verrucosa colonies recorded by diver
surveys in southwest Britain fall within areas protected by various
other European Union legislation (Pikesley et al., 2016). However, not
all of these areas are protected from bottom trawling (for example,
The Manacles, Whitsand Bay, Chesil Beach and Stennis Ledges
MCZs), suggesting that a large proportion of E. verrucosa in Britain
remains vulnerable to anthropogenic disturbance and the current level
of protection of UK marine ecosystems afforded by the MCZ network
is generally insufficient (for example, Lieberknecht and Jones, 2016;
Pikesley et al., 2016). Moreover, while the UK government appears to
have moved away from the recommended ecological network guide-
lines for MCZ designation (Lieberknecht and Jones, 2016), the E.
verrucosa data presented here highlight interesting findings relative to
the conservation of ecologically important and prevalent sessile taxa at

local (that is, single-site MPAs) to regional (that is, connected
metapopulation) scales.
More specifically, the genetic distinctiveness of E. verrucosa popula-

tions from Ireland underpins an argument for protecting particular
sites. Marginal populations often contain rare alleles (the highest
extent of private alleles were found at these sites), but may recruit
more slowly, and may be genetically isolated, implying vulnerability
and reduced resilience (Sanderson, 1996) and therefore an increased
need for protection. However, away from the edges of the species
range, our data suggest that connectivity can be maintained between
populations of these species in some designated MCZs. Moreover, the
range of E. verrucosa in Britain is small compared to its (primarily
Lusitanean) global distribution and, although contemporary connec-
tivity between British populations appears to be a high, at regional
spatial scales it could be argued that the genetic distinction of these
populations, coupled with their possible role as source populations
that act to maintain broader connectivity across this area of the
northeast Atlantic, may be sufficient to warrant international con-
servation efforts (for example, OSPAR Convention, 2013).
In the UK, A. digitatum has no specific protective status, is not at

the periphery of its global range, and, in our study (apart from the
North Sea—English Channel/eastern Atlantic divide), it exhibited
relatively high genetic diversity with little evidence of any major
barriers to gene flow. Overall, coupled with the high prevalence of this
species in UK waters, these factors imply that this species may be a low
priority for protection in its own right, and it is likely to receive only
patchy, incidental protection based upon the location of current MCZs
designated on the basis of other features, although arguments for
consideration of this species in design guidelines could still fit both the
‘representativity’ and ‘replication’ principles (Natural England, 2010).
However, reduced heterozygosity and impaired sexual reproduction
have been reported in another cnidarian species subjected to trawling
damage (Henry and Kenchington, 2004) and reduced colony numbers
and size have been reported for A. digitatum in Lyme Bay, southern
England, in trawled areas (Hinz et al., 2011); therefore, this species
may be locally vulnerable. Certainly, the occurrence of damaged,
sessile populations in disturbed areas, are a useful proxy to highlight
degraded ecosystems that may also contain more directly threatened
species.
The results from the present study suggest that populations of

E. verrucosa would benefit from protection across the species range
as a connected metapopulation. Although implementing protective
measures for a single species across its entire UK range is highly
unlikely given commercial and economic pressures within the
region, our study serves to highlight areas for consideration in an
ecosystem-based management approach. Irish populations of
E. verrucosa may warrant protection because of their marginality,
yet they are not currently protected within the Republic of Ireland
beyond their IUCN listing. Analysis of gene flow for both octocoral
species studied suggests populations in southwest Britain act as a
source for surrounding regions, highlighting the value in protecting
these populations. In the UK, the current recommendation for the
spacing of designated MPAs is in the region of 40–80 km (Natural
England, 2010). In light of our findings, it appears that the
distances between these MPAs would generally be sufficient to
maintain genetic connectivity of these two octocoral species in UK
waters. Of course, this assumes that contemporary local oceanic
currents are able to facilitate the transport of enough larvae in
each species, whether by a continuing stepping-stone process or a
single dispersal event. Managing effective conservation of marine
species with overlapping generations and high levels of clonality,
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such as sponges and corals, can be challenging because character-
istic genotypes may persist for decades to centuries, even after
significant barriers to gene flow arise. As a result, traditional
F-statistics may not always represent current patterns of genetic
connectivity (Botsford et al., 2009) and these factors should be
incorporated when including genetic data into MPA network
designation. Furthermore, because of the challenges associated
with genotyping octocorals, such as the slow rate of mitochondrial
evolution (McFadden et al., 2010) and the difficulty of isolating
microsatellites (Liu et al., 2005), the type and numbers of molecular
marker used may not be powerful enough to detect a signal of fine-
scale population structure. As seen in the current study,
while relatively strong patterns of regional structure were detected
in E. verrucosa, except for some weak structuring between French
and English samples of E. verrucosa in the Channel, no fine-scale
structure (o200 km between sample sites) was detected for either
of the species studied. This may be indicative of genetic connectiv-
ity between these populations, but could also represent a lack of
power in the genetic markers used. Exploration of alternative
marker systems may deliver improved resolution (for example,
Shinzato et al., 2015) and should prove valuable for future
conservation research and the management of MPA networks.
In conclusion, genetic diversity appears to be uniform across the

range studied in both species; however, genetic diversity was low in
E. verrucosa, whereas in A. digitatum, it was slightly higher, but still
lower than that reported for two species of Mediterranean octocorals
(Ledoux et al., 2010; Mokhtar-Jamai et al., 2011). For both species,
only limited inbreeding was apparent, and whether this has an impact
on fitness and long-term resilience of the populations in question is
currently unknown. Regional population structure was identified in
E. verrucosa, indicative of departures from panmixia at large spatial
scales; in contrast, in A. digitatum, apart from some genetic
differentiation between populations from the North Sea and those
from the English Channel/eastern Atlantic, we found little population
structure, suggesting high gene flow and connectivity in this species in
the western part of the range sampled. Contemporary and historical
estimates of effective population size were contrasting and generally
difficult to interpret, and for both species the potential role of large
Nes in masking a lack of gene flow cannot be ruled out. Patterns of
gene flow were complex, but indicated Britain as a source of genetic
variants for both species. Several populations of both species are
represented in the UK MPA network and, given the ecological
importance of both species, continued monitoring and assessment
of their genetic diversity within and beyond protected sites could be a
useful measure of the efficacy of the existing network, and a valuable
guide to the designation of new MCZs.
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