76 research outputs found

    Hydraulic disruption and passive migration by a bacterial pathogen in oak tree xylem

    Get PDF
    Xylella fastidiosa (Xf) is a xylem-limited bacterial pathogen that causes leaf scorch symptoms in numerous plant species in urban, agricultural, and natural ecosystems worldwide. The exact mechanism of hydraulic disruption and systemic colonization of xylem by Xf remains elusive across all host plants. To understand both processes better, the functional and structural characteristics of xylem in different organs of both healthy and Xf-infected trees of several Quercus species were studied. Hydraulic conductivity (Ks) in Xf-infected petioles of Q. palustris and Q. rubra decreased significantly compared with healthy trees as the season progressed and plummeted to zero with the onset of scorch symptoms. Prior to the onset of symptoms, embolism was as much as 3.7 times higher in Xf-infected petioles compared with healthy controls and preceded significant reductions in Ks. Embolism likely resulted from pit membrane degradation during colonization of new petiole xylem and triggered the process that eventually led to vessel occlusion. Pit membrane porosity was studied using the following four methods to determine if a pathway exists in the xylem network of woody stems that allows for passive Xf migration: (i) calculations based on vulnerability to cavitation data, (ii) scanning electron micrographs, (iii) microsphere injections, and (iv) air seeding thresholds on individual vessels. All four methods consistently demonstrated that large pit membrane pores (i.e. greater than the diameter of individual Xf) occur frequently throughout the secondary stem xylem in several Quercus species. These large pores probably facilitate systemic colonization of the secondary xylem network and contribute to the high susceptibility to bacterial leaf scorch exhibited among these species

    Modeling vegetative vigour in grapevine: unraveling underlying mechanisms

    Get PDF
    Mechanistic modeling constitutes a powerful tool to unravel complex biological phenomena. This study describes the construction of a mechanistic, dynamic model for grapevine plant growth and canopy biomass (vigor). To parametrize and validate the model, the progeny from a cross of Ramsey (Vitis champinii) × Riparia Gloire (V. riparia) was evaluated. Plants with different vigor were grown in a greenhouse during the summer of 2014 and 2015. One set of plants was grafted with Cabernet Sauvignon. Shoot growth rate (b), leaf area (LA), dry biomass, whole plant and root specific hydraulic conductance (kH and Lpr), stomatal conductance (gs), and water potential (Ψ) were measured. Partitioning indices and specific leaf area (SLA) were calculated. The model includes an empirical fit of a purported seasonal pattern of bioactive GAs based on published seasonal evolutionary levels and reference values. The model provided a good fit of the experimental data, with R = 0.85. Simulation of single trait variations defined the individual effect of each variable on vigor determination. The model predicts, with acceptable accuracy, the vigor of a young plant through the measurement of Lpr and SLA. The model also permits further understanding of the functional traits that govern vigor, and, ultimately, could be considered useful for growers, breeders and those studying climate change.EEA MendozaFil: Hugalde, Ines Pilar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentina. University of California at Davis. Department of Viticulture and Enology; Estados UnidosFil: Agüero, Cecilia B. University of California at Davis. Department of Viticulture and Enology; Estados UnidosFil: Barrios-Masias, Felipe H. University of California at Davis. Department of Viticulture and Enology; Estados Unidos. University of Nevada. Department of Agriculture, Veterinary and Rangeland Sciences; Estados UnidosFil: Romero, Nina. University of California at Davis. Department of Viticulture and Enology; Estados UnidosFil: Nguyen, Andy Viet. University of California at Davis. Department of Viticulture and Enology; Estados UnidosFil: Riaz, Summaira. University of California at Davis. Department of Viticulture and Enology; Estados UnidosFil: Piccoli, Patricia Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: McElrone, Andrew J. University of California at Davis. Department of Viticulture and Enology; Estados Unidos. US Department of Agriculture. ARS; Estados UnidosFil: Walker, M. Andrew. University of California at Davis. Department of Viticulture and Enology; Estados UnidosFil: Vila, Hernan Felix. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; Argentin

    Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS

    Get PDF
    Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed. We illustrate how meteorological data inputs can introduce biases that vary in space and at seasonal timescales, but that can persist from year to year. We also observe that errors in SIMS estimates of land surface conductance can have a particularly strong dependence on time of year. Overall, meteorological inputs introduced RMSE of 0.33-0.65 mm/day (7-27%) across sites, while SIMS introduced RMSE of 0.55-0.83 mm/day (19-24%). The relative error contribution from meteorological inputs versus SIMS varied across sites; errors from SIMS were larger at one site, errors from meteorological inputs were larger at a second site, and the error contributions were of equal magnitude at the third site. The similar magnitude of error contributions is significant given that many satellite-driven ET models differ in their approaches to estimating land surface conductance, but often rely on similar or identical meteorological forcing data. The finding is particularly notable given that SIMS makes assumptions about the land surface (no soil evaporation or plant water stress) that do not always hold in practice. The results of this study show that improving SIMS by eliminating these assumptions would result in meteorological inputs dominating the error budget of the model on the whole. This finding underscores the need for further work on characterizing spatial uncertainty in the meteorological forcing of ET

    Detecting short-term stress and recovery events in a vineyard using tower-based remote sensing of photochemical reflectance index (PRI)

    Full text link
    Frequent drought and high temperature conditions in California vineyards necessitate plant stress detection to support irrigation management strategies and decision making. Remote sensing provides a powerful tool to continuously monitor vegetation function across spatial and temporal scales. In this study, we utilized a tower-based optical-remote sensing system to continuously monitor four vineyard subplots in California’s Central Valley. We compared the performance of the greenness-based normalized difference vegetation index (NDVI) and the physiology-based photochemical reflectance index (PRI) to track variations of eddy covariance estimated gross primary productivity (GPP) during four stress events between July and September 2020. Our results demonstrate that NDVI was invariant during stress events. In contrast, PRI was effective at tracking the short-term stress-induced declines and recovery of GPP associated with soil water depletion and increased air temperature, as well as reductions in GPP from decreased PAR caused by smokey conditions from nearby fires. Canopy-scale remote sensing can provide continuous real-time data, and physiology-based vegetation indices such as PRI can be used to monitor variation of photosynthetic activity during stress events to aid in management decisions.First author draf

    Evaluating different metrics from the thermal-based two-source energy balance model for monitoring grapevine water stress

    Get PDF
    Precision irrigation management requires operational monitoring of crop water status. However, there is still some controversy on how to account for crop water stress. To address this question, several physiological, several physiological metrics have been proposed, such as the leaf/stem water potentials, stomatal conductance, or sap flow. On the other hand, thermal remote sensing has been shown to be a promising tool for efficiently evaluating crop stress at adequate spatial and temporal scales, via the Crop Water Stress Index (CWSI), one of the most common indices used for assessing plant stress. CWSI relates the actual crop evapotranspiration ET (related to the canopy radiometric temperature) to the potential ET (or minimum crop temperature). However, remotely sensed surface temperature from satellite sensors includes a mixture of plant canopy and soil/substrate temperatures, while what is required for accurate crop stress detection is more related to canopy metrics, such as transpiration, as the latter one avoids the influence of soil/substrate in determining crop water status or stress. The Two-Source Energy Balance (TSEB) model is one of the most widely used and robust evapotranspiration model for remote sensing. It has the capability of partitioning ET into the crop transpiration and soil evaporation components, which is required for accurate crop water stress estimates. This study aims at evaluating different TSEB metrics related to its retrievals of actual ET, transpiration and stomatal conductance, to track crop water stress in a vineyard in California, part of the GRAPEX experiment. Four eddy covariance towers were deployed in a Variable Rate Irrigation system in a Merlot vineyard that was subject to different stress periods. In addition, root-zone soil moisture, stomatal conductance and leaf/stem water potential were collected as proxy for in situ crop water stress. Results showed that the most robust variable for tracking water stress was the TSEB derived leaf stomatal conductance, with the strongest correlation with both the measured root-zone soil moisture and stomatal conductance gas exchange measurements. In addition, these metrics showed a better ability in tracking stress when the observations are taken early after noon.Funding and logistical support for the GRAPEX project were provided by E. & J. Gallo Winery and from the NASA Applied Sciences-Water Resources Program (Grant no. NNH17AE39I). This research was also supported in part by the U.S. Department of Agriculture, Agricultural Research Service. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Peer reviewe

    Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape

    Get PDF
    The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit

    Aquaporins and root water uptake

    No full text

    Synchrotron x-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery

    No full text
    The formation of emboli in xylem conduits can dramatically reduce hydraulic capacity and represents one of the principal mechanisms of drought-induced mortality in woody plants. However, our understanding of embolism formation and repair is constrained by a lack of tools to directly and nondestructively measure these processes at high spatial resolution. Using synchrotron-based microcomputed tomography (microCT), we examined embolism in the xylem of coast redwood (Sequoia sempervirens) saplings that were subjected to cycles of drought and rewatering. Embolism formation was observed occurring by three different mechanisms: as tracheids embolizing in wide tangential bands; as isolated tracheids in seemingly random events; and as functional groups connected to photosynthetic organs. Upon rewatering, stem water potential recovered to predrought stress levels within 24 h; however, no evidence of embolism repair was observed even after a further 2 wk under well-watered conditions. The results indicate that intertracheid air seeding is the primary mechanism by which embolism spreads in the xylem of S. sempervirens, but also show that a small number of tracheids initially become gas-filled via another mechanism. The inability of S. sempervirens saplings to reverse drought-induced embolism is likely to have important ecological impacts on this species
    corecore