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Abstract
Precision irrigation management requires operational monitoring of crop water status. However, there is still some controversy 
on how to account for crop water stress. To address this question, several physiological, several physiological metrics have 
been proposed, such as the leaf/stem water potentials, stomatal conductance, or sap flow. On the other hand, thermal remote 
sensing has been shown to be a promising tool for efficiently evaluating crop stress at adequate spatial and temporal scales, 
via the Crop Water Stress Index (CWSI), one of the most common indices used for assessing plant stress. CWSI relates the 
actual crop evapotranspiration ET (related to the canopy radiometric temperature) to the potential ET (or minimum crop 
temperature). However, remotely sensed surface temperature from satellite sensors includes a mixture of plant canopy and 
soil/substrate temperatures, while what is required for accurate crop stress detection is more related to canopy metrics, such 
as transpiration, as the latter one avoids the influence of soil/substrate in determining crop water status or stress. The Two-
Source Energy Balance (TSEB) model is one of the most widely used and robust evapotranspiration model for remote sensing. 
It has the capability of partitioning ET into the crop transpiration and soil evaporation components, which is required for 
accurate crop water stress estimates. This study aims at evaluating different TSEB metrics related to its retrievals of actual 
ET, transpiration and stomatal conductance, to track crop water stress in a vineyard in California, part of the GRAPEX 
experiment. Four eddy covariance towers were deployed in a Variable Rate Irrigation system in a Merlot vineyard that was 
subject to different stress periods. In addition, root-zone soil moisture, stomatal conductance and leaf/stem water potential 
were collected as proxy for in situ crop water stress. Results showed that the most robust variable for tracking water stress was 
the TSEB derived leaf stomatal conductance, with the strongest correlation with both the measured root-zone soil moisture 
and stomatal conductance gas exchange measurements. In addition, these metrics showed a better ability in tracking stress 
when the observations are taken early after noon.

Introduction

Monitoring crop water stress is crucial for irrigation man-
agement. Particularly for tree and vine crops, inducing a 
regulated water stress at certain phenological stages has been 
shown to positively affect fruit quality (Bravdo et al. 1985; 
Lopez et al. 2012). Regulated deficit irrigation (RDI) is a 
strategy that is typically used in viticulture to submit vines 
to a slight to moderate stress. Precise irrigation practices in 
viticulture, therefore, should account for a near-real-time 
monitoring of plant stress that could help in triggering/

suppressing irrigation according to the RDI plan. Tradi-
tionally, crop stress has been defined from measurements of 
water potential Ψ , either leaf, stem or pre-dawn (Flexas et al. 
2004), measured in situ with a pressure chamber (Scholander 
et al. 1965). However, several authors pointed out the pitfalls 
or issues regarding the use of water potential measurements 
at leaf level for irrigation scheduling, as those Ψ thresholds 
are point based and are likely to vary depending on root 
distribution, vine vigour, leaf area index, soil texture varia-
tions and/or physiological and morphological responses to 
water stress (van Leeuwen et al. 2009; Romero et al. 2010; 
García-Tejera et al. 2021).

As one alternative, previous studies have suggested other 
proxies, such as the use of stomatal conductance ( gs ) or sap 
flow measurements (Eastham and Gray 1998; Ginestar et al. 
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1998; Patakas et al. 2005), considering these as a more pre-
cise and sensitive indicator of water stress than Ψ (Flexas 
et al. 2004; Cifre et al. 2005; Romero et al. 2010; Zúñiga 
et al. 2018). However, measuring these metrics in situ is 
more challenging due to the need of use of more expensive 
equipment, a higher level of expertise, and yet still prone to 
errors (Jarvis 1976).

Remote sensing can be an operational and low-cost 
alternative for providing spatially distributed estimates of 
crop stress. In particular, thermal imagery can be a sound 
approach for monitoring crop stress (Jackson et al. 1981; 
González-Dugo et al. 2014), and hence estimating water 
potential (Berni et al. 2009; Bellvert et al. 2016) or stomatal 
conductance (Inoue et al. 1990; Taconet et al. 1995; Jones 
1999; Jones et al 2002; Leinonen et al. 2006; Berni et al. 
2009). More recent studies in vineyards showed that the Two 
Source Energy Balance model (Norman et al. 1995) was 
able to accurately estimate evapotranspiration, and its parti-
tioning between soil evaporation and canopy transpiration, 
using thermal infrared measurements obtained either from 
in-situ radiometers (Kustas et al. 2018; Nieto et al. 2019a), 
airborne cameras (Nieto et al. 2019b) or satellite-borne 
sensors (Knipper et al. 2019, 2020). Indeed, Bellvert et al. 
(2020) showed that TSEB-derived transpiration showed a 
more robust relationship with midday stem water potential 
than bulk ET, as the latter is also influenced by the soil/
substrate near-surface moisture and hence soil evaporation. 
Furthermore, Nieto et al. (2019a) hypothesized that from 
TSEB estimates of canopy latent heat fluxes and its derived 
aerodynamic resistances, it is possible to derive effective 
values of stomatal conductance from top-down approaches 
(Baldocchi et al. 1991), similar to the techniques proposed 
by Jones et al (2002), Leinonen et al. (2006), or Berni et al. 
(2009).

The majority of these previous studies using thermal 
remote sensing for crop water stress monitoring applied a 
normalization approach that related the radiometric tempera-
ture, or the estimated ET, to a reference value. This is the 
case of the widely used Crop Water Stress Index (CWSI), 
proposed by Jackson et al. (1981), which is computed as the 
ratio of actual ET over potential ET ( CWSI = 1 − ET∕ET0 ). 
This potential ET ( ET0 ) is defined as the water usage (or 
evapotranspiration rate) of a well watered crop under the 
same physiological conditions as the given crop. The der-
ivation of ET0 has been usually computed from the Pen-
man–Monteith model, assuming a maximum (minimum) 
stomatal conductance (resistance). However, the “big-leaf” 
Penman–Monteith model estimates the fluxes as a single-
source, not being able to physically separate crop transpi-
ration from soil evaporation. Furthermore, the radiation 
transmission and the turbulent transport from canopy and 
interrow of a heterogeneous row crop such as trellised vine-
yards is likely to deviate from the physics of “big-leaf” 

models (De Pury and Farquar 1997). On the other hand, 
the two-source energy combination model of Shuttleworth 
and Wallace (1985), which extended the Penman–Monteith 
energy combination approach to be applicable to sparse and 
heterogeneous crops, is hypothesized to be more suitable for 
evaluating the potential crop water needs and stress (Nieto 
et al. 2019a). With Shuttleworth–Wallace, there is the ability 
of estimating crop potential transpiration, and the capability 
of including the effect of the row structure in energy parti-
tioning (Parry et al. 2019), as well as aerodynamic rough-
ness variations with wind direction (Alfieri et al. 2019a).

Based on the previous observations, this study aims at 
evaluating different crop stress metrics derived from TSEB 
using in situ measurements for a 3-year experiment over 
a vineyard subject to different stress levels. The specific 
research questions that are addressed are: 

1. What are the advantages and limitations of using stem/
leaf water potential, stomatal conductance and canopy 
transpiration for tracking variations of root-zone soil 
moisture?

2. Is TSEB actual transpiration and/or stomatal conduct-
ance a better proxy for crop stress than bulk evapotran-
spiration?

3. Does the Shuttleworth–Wallace model provide any 
advantage over the Penman–Monteith model to evalu-
ate crop potential needs, and hence CWSI?

Materials and methods

The correlation and its significance (p value) will be the 
basis to evaluate the relationship between the different 
remote sensing crop stress metrics and the in situ physi-
ological and root-zone soil moisture measurements. Moreo-
ver, TSEB transpiration and stomatal conductance will also 
be directly evaluated against their correspondent ground 
measurements.

Crop stress metrics

Traditionally, the Crop Water Stress Index has been used 
to assess vegetation water stress, based on the relationship 
between actual and potential evapotranspiration (Jackson 
et al. 1981). In this study, we take advantage of the two 
source models to compute a series of alternative metrics 
in Eq. 1, under the assumption that canopy fluxes are more 
related to crop conditions than bulk fluxes: 

(1a)CTSI =
�EC

�EC,SW
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 where CTSI stands for Crop Transpiration Stress Index and 
CSSI for Crop Stomatal Stress Index. �EC and �EC,SW are, 
respectively, actual TSEB and potential canopy latent heat 
fluxes computed with the Shuttleworth–Wallace model; gs 
is the actual stomatal conductance, derived from TSEB, and 
gst,0 is the maximum stomatal conductance (see “Sensitivity 
of stomatal conductance to vapour pressure deficit” for its 
derivation).

In addition, since potential bulk latent heat flux can be 
defined in different forms, we evaluated different CWSI values, 
depending on whether the potential latent heat flux is computed 
from the Penman–Monteith equation, using a constant mini-
mum stomatal resistance ( CWSI-PMRc,min = �E∕�EPMRc,min

 , 
with Rc = 50 s m−1 ) or a vapour pressure deficit (VPD) depend-
ant stomatal resistance ( CWSI-PMRc,VPD = �E∕�EPMRc,VPD

 ), 
as well as the potential latent heat flux computed form the 
Shuttleworth–Wallace model with VPD dependant stomatal 
resistance ( CWSI-SWRc,VPD = �E∕�ESWRc,VPD

).
Finally, the fraction of actual ET to Allen et al. (1998) refer-

ence ET is also computed ( fREF =
ETday

ETFAO56

 ) as a stress metric 
typically used in climate studies (Anderson et al. 2016). Note 
that all stress metrics are computed as a ratio, removing the 
term “ 1− ” from the CWSI to ensure that stress indices have a 
lower limit of 0 for maximum stress (full stomatal closure), 
increasing to 1 for non-stressed vegetation (fully 
transpiring).

Sensitivity of stomatal conductance to vapour pressure 
deficit

Kustas et al. (2022) showed the advantages of accounting for 
the sensitivity of stomatal closure at higher VPD in canopies 
highly coupled with the atmosphere (Jarvis and McNaughton 
1986). Based on the method proposed by Monteith (1995), 
Kustas et al. (2022) derived the stomatal parameters for the 
Leuning (1995) stomatal conductance model of Eq. 2:

with gm = 0.58 mol m−2 s−1 and D0 = 15.85 mb.
The canopy stomatal resistance ( Rc ), dependent of VPD 

variations, is then computed from equation:

where LAI is the leaf area index, defined as half of the total 
leaf area, and fs is a factor representing the distribution of 
stomata in the leaf ( fs = 1 for hypostomatous leaves and 

(1b)CSSI =
gs

gst,0

(2)gs,0 =
gm

1 + VPD∕D0

(3)Rc =
1

gs,0fsfgLAI

fs = 2 for amphistomatous leaves) and fg is the fraction of 
LAI that is green and hence actively transpiring.

Shuttleworth–Wallace model

The two-source Shuttleworth–Wallace energy combination 
model (Shuttleworth and Wallace 1985) was specifically 
designed to account for evapotranspiration partitioning in 
sparse crops. Therefore, both the heat and water fluxes are 
separated into a soil and canopy layer, with a series of resist-
ances set in series (Fig. 1).

Energy fluxes are, therefore, split into soil and canopy, con-
sidering the conservation of energy (Eq. 4): 

 with Rn being the net radiation, H the sensible heat flux, �E 
the latent heat flux or evapotranspiration, and G the soil heat 
flux (all fluxes are expressed in W m−2 . The approximation 
in Eq. 4 reflects additional components of the energy balance 
that are usually neglected, such as heat advection, storage of 
energy in the canopy layer or energy for the fixation of CO2 
(Hillel 1998; Baldocchi et al. 1991), which are not computed 
by the model.

Canopy latent heat flux (or transpiration) is computed from 
Eq. 5.

where �a is the air density; cp the heat capacity of air, VPD0 
is the air vapour pressure deficit at the canopy–air interface; 
Rx is the canopy boundary resistance to momentum, heat 
and vapour transport; and Rc is related to the leaf stomatal 
conductance gs via Eq. 3

The vapor pressure deficit at the canopy–air interface 
( VPD0 ) is computed as (Shuttleworth and Wallace 1985)

where VPD is the measured atmospheric vapour pressure 
deficit, Ra is the aerodynamic resistance to turbulent trans-
port, Rn is the surface net radiation, G is the soil heat flux, 
and �E is the surface bulk (soil + canopy) latent heat flux, 
estimated as (Eq. 7):

(4a)Rn ≈ H + �E + G

(4b)Rn,S ≈ HS + �ES + G

(4c)Rn,C ≈ HC + �EC

(5)�EC =

ΔRn.C + �acp
VPD0

Rx

Δ + �

(

1 +
Rc

Rx

)

(6)VPD0 = VPD + Ra

Δ
(

Rn − G
)

− (Δ + �)�E

�acp

(7)�E = CcPMC + CsPMS
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PMC and PMS are the estimates of an infinite deep canopy 
and bare soil latent heat fluxes, respectively, using the Pen-
man–Monteith equation: 

 where Rs is the soil boundary layer resistance to turbu-
lent transport and Rss is the near-surface soil resistance 
to vapour transport. The latter is set to a fixed value of 
Rss = 2000 s m−1 considering a rather dry soil surface, to be 
consistent with the definition of potential ET adopted with 
the Penman–Monteith approach.

Priestley–Taylor two source energy balance model

Remote sensing energy balance models, REBMs, rely on the 
ability of the radiometric information to estimate both net 
radiation (Liang et al. 2010) and sensible heat flux (Norman 
et al. 1995), whereas soil heat flux is usually estimated as a 
fraction of Rn (Liebethal and Foken 2007). Therefore, latent 
heat flux is retrieved as a residual of the remaining terms of 

(8a)PMC =

Δ
(

Rn − G
)

+
�acpVPD−ΔRx(Rn,S−G)

Ra+Rx

Δ + �

(

1 +
Rc

Ra+Rx

)

(8b)PMS =

Δ
(

Rn − G
)

+
�acpVPD−ΔRsRn,C

Ra+Rs

Δ + �

(

1 +
Rss

Ra+Rs

)

Eq. 4. In addition, REBMs need additional ancillary inputs, 
such as air temperature, wind speed and canopy height or 
roughness, to account for the efficiency in the turbulent 
transport of heat and water between the land surface and the 
overlying air (Raupach 1994; Shaw and Pereira 1982; Alfieri 
et al. 2019a). Specifically for TSEB, vegetation structure and 
density are also important for estimating wind and radiation 
extinction through the canopy layer affecting the radiation 
partitioning and turbulent transport of momentum, heat and 
water vapour in the canopy air space (Nieto et al. 2019a; 
Parry et al. 2019).

The key in TSEB models is the partition of sensible heat 
flux into the soil and canopy layers, which depends on the 
soil and canopy temperatures ( TS and TC , respectively, left 
side of Fig. 1). Given the difficulty of obtaining the pure 
component temperatures, even with very high resolution 
data due to canopy gaps, Norman et al. (1995) found a solu-
tion to retrieve TS and TC using a single observation of the 
directional radiometric temperature Trad(�) as this is the case 
for most of the remote sensing systems. Equation 9 decom-
poses the composite Trad(�) temperature between its compo-
nents TS and TC , assuming blackbody emission of thermal 
radiance:

where fc(�) is the fraction of vegetation observed by the 
sensor. Since Eq. 9 consists of two unknowns and only one 

(9)�T4

rad
(�) = fc(�)� T4

C
+
[

1 − fc(�)
]

� T4

S

Fig. 1  Two-source energy 
balance scheme including the 
transport of both heat (H) and 
water vapour ( �E). Adapted 
from Shuttleworth and Wallace 
(1985)
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equation, an iterative process to find HS , TS , HC and TC is 
defined based upon an initial guess of potential canopy 
transpiration, and under the assumption that during daytime 
hours condensation for the soil/substrate should not occur. 
The initial canopy latent and sensible heat fluxes are esti-
mated based on the Priestley and Taylor (1972) formulation 
for potential transpiration (Eq. 10) and Eq. 4. 

 where �PT is the Priestley–Taylor coefficient, initially set to 
1.26, fg is the fraction of vegetation that is green and hence 
capable of transpiring, Δ is the slope of the saturation vapour 
pressure versus temperature, � is the psychrometric constant. 
TC is then computed by inverting the equation for turbulent 
transport of heat (see Norman et al. 1995) between the sur-
face and the reference height above the surface)

With a first estimate of TC , soil temperature is computed 
from Eq. 9 and then soil sensible and latent heat fluxes. At 
this stage, if soil latent heat flux results to be non-negative, a 
solution is found, otherwise canopy transpiration is reduced 
incrementally to avoid negative soil latent heat flux, until a 
realistic solution is found (no condensation occurring neither 
in the soil nor in the canopy in daytime). For more details 
the reader is addressed to the works of Norman et al. (1995) 
or Kustas and Norman (1999).

Inversion of actual stomatal conductance

With an estimate of canopy fluxes and aerodynamic resist-
ances, the effective conductance to water vapour diffusion 
exerted by all leaves in the canopy ( Rc , s m −1 ) can then be 
estimated by the resistance network of Fig. 1 (Eq. 11):

where Rc represents the resistance to water diffusion through 
both the cuticle and stomata in the canopy (m s−1 ), e∗ is the 
water vapour pressure in the leaf (kPa), which is assumed 
saturated at the leaf temperature TC (K) (Farquhar and Shar-
key 1982), Rx is the resistance to momentum and heat trans-
port at the boundary layer of the canopy interface (m s−1 ), 
and e0 is the vapour pressure of the air at the canopy inter-
face (kPa), which is related to the air water vapour pressure 
measured at the reference height ea through Eq. 12 (Fig. 1):

(10a)�EC = �PT fg
Δ

Δ + �
Rn,C

(10b)HC = Rn,C − �EC

(11)Rc =
�acp

(

e∗ − e0
)

�EC �
− Rx

(12)e0 = ea +
�E � Ra

�acp
.

The conductance of the cuticle can be neglected with respect 
to the conductance of the stoma (Duursma et al. 2019). 
Therefore, the leaf effective stomatal conductance to H 2 0 
can finally be computed by inverting Eq. 3.

Equation 11 shows that stomatal conductance depends 
on canopy transpiration ( �EC ) and the canopy boundary 
layer resistances ( Rx ). Furthermore, �EC depends at the 
same time on both soil Rs and canopy Rx resistances, from 
Eqs. A2 and A4 in Norman et al. (1995): 

 where d is the zero-plane displacement height, zoM is the 
roughness length for momentum (all these magnitudes 
expressed in m), US is the wind speed at the height z′ above 
the soil surface, where the effect of the soil roughness is 
minimal ( z� ≈ 0.01−0.05 m). Coefficients b ≃ 0.0012 (Nor-
man et al. 1995) and c ≃ 0038 m s−1 K−1∕3 (Kustas et al. 
2016) depend on turbulent length scale in the canopy, soil-
surface roughness and turbulence intensity in the canopy and 
are discussed in Sauer et al. (1995), Kondo and Ishida (1997) 
and Kustas et al. (2016). C′ is assumed to be 90 s1∕2 m−1 
Norman et al. (1995); lw is the average leaf size (m) and 
Ud+zoM

 is the wind speed at the effective heat source/sink 
layer ( d + zoM).

Study site

The GRAPEX (Kustas et al. 2018) RIP720 experimental 
site, located in Madera county (CA, USA) is used in this 
study. The grapevine variety in this vineyard is Merlot, 
planted in 2010 and trellised in a bilateral cordon follow-
ing an East–West row orientation. The spacing between 
rows is 3.35 m, with a plating interval of 1.52 m. The 
vineyard is on flat terrain at an elevation above mean sea 
level of approximately 60 m. Soil texture is sandy loam 
and interrow is covered by a cover crop that is planted 
in the Fall and is mowed once or twice in April/May the 
following year.

RIP720 includes a Variable Rate Deficit Irrigation 
infrastructure (Fig. 2) that allowed to impose several stress 
events in different irrigation sectors. For that reason, four 
Eddy Covariance (EC) towers were installed in April 2018 
to track water and energy fluxes in those different sectors. 
In addition, soil moisture probes were installed along the 
typical flux footprint considering the prevailing winds 
(NW–SE).

(13a)Rs =
1

c
(

TS − TA
)1∕3

+ bUS

(13b)Rx =
C�

LAI

(

lw

Ud+zoM

)1∕2
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Flux data

The EC/energy balance systems were located approximately 
20 m inside each vineyard at the south–east edge to have an 
adequate fetch for the prevailing winds from the north–west. 
A detailed description of the measurements and their post-
processing is described by Alfieri et al. (2019b). Briefly the 
tower at each site is instrumented with an infrared gas ana-
lyzer (IRGASON, Campbell Scientific,1 Logan, Utah) and a 
sonic anemometer (CSAT3, Campbell Scientific) co-located 
at 4 m agl to measure the concentrations of water and carbon 
dioxide and wind velocity, respectively. The full radiation 
budget was measured using a four-component net radiometer 
(CNR-1, Kipp and Zonen, Delft, Netherlands) mounted at 
4.25 m agl. Air temperature and water vapor pressure at 4 m 
agl were measured using an aspirated shielded temperature 
and humidity probe (E+E Elektronik, Engerwitzdorf, Aus-
tria). Subsurface measurements include the soil heat flux 
measured via a cross-row transect of five plates (HFT-3, 
Radiation Energy Balance Systems, Bellevue, Washington) 
buried at a depth of 8 cm. Because of the frequent lack of 
energy balance closure using Eddy Covariance technique, 
the values of H and �E observed were computed following 
the rationale described in Kustas et al. (2022). We derived 
the measured fluxes from an average (or ensemble) of three 
possible closure corrections, assigning all the residual error 

to H, assigning all the residuals to �E , and assigning the 
residual error proportionally to H and �E by preserving the 
Bowen Ratio (i.e., H∕�E ). Please see Kustas et al. (2022) 
and Bambach et al. (2022) for further details on the energy 
closure uncertainty and rationale behind various closure 
approaches.

Physiological data

in situ physiological measurements were carried out in these 
four sectors since spring 2018. Sampling interval varied 
between years, with more frequent sampling during inten-
sive observation campaigns, and coincident with Landsat 
overpasses under clear-skies. For each sector three vines 
were selected (Fig. 2) for sampling, and every time 3–5 adult 
leaves from the top half of the canopy and fully exposed 
to the sun were sampled. The stomatal conductance was 
measured on the abaxial side with a gas exchange analyzer 
(Li-Cor model 6400 or 6800; LI-COR Biosciences, Lin-
coln, NE). Immediately after the same leaves were excised 
to measure their leaf water potential with a pressure cham-
ber (Scholander et al. 1965). In addition, 30–45 min before 
each sampling point, one leaf per vine was bagged using an 
opaque bag, and the stem water potential measured concur-
rent with the rest of leaf level measurements.

Root zone soil moisture data

The root zone soil moisture (RZSM, m 3 m−3 ) estimates 
in the vine row were processed by Chen et al. (2022). The 
RZSM estimates were computed from vine-row sensors 
monitoring 5, 30, 60 and 90 cm depths at 15 cm distance and 

Fig. 2  RIP720 experimental 
vineyard with four Eddy Covari-
ance towers (blue stars) placed 
to maximize fetch for the four 
different treatment sectors (yel-
low boxes). Orange rectangles 
represent the root-zone soil 
moisture (RZSM) probes and 
green triangles show the loca-
tion of the data vines, where 
leaf water potential and gas 
exchange measurements were 
sampled. The black grid repre-
sents the variable-rate deficit 
irrigation (VRDI) network

1 The use of trade, firm, or corporation names in this article is for the 
information and convenience of the reader. Such use does not consti-
tute official endorsement or approval by the US Department of Agri-
culture or the Agricultural Research Service of any product or service 
to the exclusion of others that may be suitable.
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5, 30, and 60 cm depths at 45 cm distance from the drip line 
centered along the vine row. The sensors used for measuring 
RZSM are model CS655 TDR probes from Campbell Scien-
tific Inc., Logan, UT, USA. The daily RZSM was computed 
for the 30–60 cm layer along the vine rows as the average of 
sub-hourly soil moisture measurements from multiple 30 cm 
(in the southeast corners of each treatment, Fig. 2) or 40 cm 
(in the center location of each treatment, Fig. 2) depth, along 
with the sensors at 60 cm depth. This value is then averaged 
over a 24-h period within each irrigation treatment to obtain 
the daily RZSM used in this analysis. For more details in 
computing vine row RZSM, the reader is referred to Chen 
et al. (2022).

TSEB implementation

To ensure a radiometric temperature encompassing both 
vine canopy and interrow surface temperatures the in situ 
measurements of upwelling longwave radiation from the 
pyrgeometer for deriving a radiative surface temperature 
were used. This allowed application of the TSEB model hav-
ing the widest range of environmental conditions and acqui-
sition times possible with a radiometric temperature similar 
to what might be observed by a satellite, such as Landsat. 
Therefore, TSEB-PT was run for every daytime hour, i.e., 
when shortwave irradiance is greater than 100 W m−2 , for the 
3-year period (2018–2020) from mid-spring (DOY = 145) 
until the end of summer (DOY = 245). The hourly surface 
composite radiative temperate Trad was extracted from the 
4-component net radiometer, Eq. 14:

where L↑ and L↓ are the upwelling and downwelling meas-
ured longwave radiance, � is the Stefan–Boltzmann constant, 
and �surf = 0.99fC + 0.94

(

1 − fC
)

 is the surface emissivity, 
assuming standard leaf and bare soil emissivity values of 
0.99 and 0.94, respectively (Sobrino et  al. 2005; Nieto 
et al. 2019a; Kustas et al. 2022). Additional inputs from 
the EC system were downwelling shortwave S↓ irradiance, 
wind speed and direction, air temperature and humidity, and 
atmospheric pressure.

Estimates of daily LAI were obtained from training 
MODIS LAI (MCD15A3H) product and Landsat surface 
reflectance using the reference based approach (Gao et al. 
2012) and adapted for vineyards by Kang et al. (2022). 
The homogeneous and high quality LAI retrievals from 
the MODIS LAI product were extracted to train Land-
sat and Sentinel-2 surface reflectance aggregated at the 
MODIS spatial resolution. The trained regression trees 
were then applied to a 30 m surface reflectance to produce 

(14)Trad =

(

L↑ −
(

1 − �surf
)

L↓

��surf

)1∕4

LAI. Daily LAI at 30 m Landsat resolution were then gen-
erated using the Savitzky–Golay moving window filter 
approach which smooths and fills the temporal gaps (Sun 
et al. 2017).

Canopy width wc , canopy height hc , and the height of 
the bottom of the canopy hb were estimated from daily LAI 
using empirical curves fit with measured in situ values 
(Nieto et al. 2019b). The fraction of LAI that is green is set 
to a constant value of 1, considering that the study period 
only covers the vegetative grapevine stage.

Soil heat flux was estimated in TSEB-PT as a fraction of 
the net radiation at the soil Rn,S using the sinusoidal relation-
ship by Santanello and Friedl (2003), with an amplitude of 
0.35 for the fraction of Rn,S . In addition the specific radiative 
and turbulent environment in the grapevines is accounted for 
by considering the radiation partitioning between the vines 
and the soil model of Parry et al. (2019), the variation of 
aerodynamic roughness with wind direction by Alfieri et al. 
(2019a), and the turbulent transfer a rough soil/cover crop 
background by Kustas et al. (2016).

Daily latent heat flux ( �Eday ), and hence daily ET for 
computing the fRET index, is estimated from instantaneous 
(i.e., hourly) metrics ( �Ei ) by assuming a constant ratio of 
latent heat flux and solar irradiance (Colaizzi et al. 2014; 
Cammalleri et al. 2014):

Temporal upscaling from instantaneous to daily values was 
considered only for two time periods: at 10:30, simulating 
a before-noon satellite thermal infrared observation, typical 
of Landsat or Sentinel-3 overpass, and 13:30, simulating an 
early afternoon satellite thermal infrared observation as the 
one planned for the Land Surface Temperature Monitoring 
(LSTM) Copernicus candidate mission (Koetz et al. 2018).

Results

Figure 3 shows the daily timeseries measurements EC evap-
otranspiration (ET), satellite LAI, RZSM, as well as stem 
water potential and stomatal conductance around solar noon. 
The latter two are averages of all grapevines and leaves sam-
pled per site between 10:00 and 14:00.

These plots show some stress events with differential 
RZSM and ET rates between sites. In addition, the LAI 
trends show a significant drop in spring 2019 for sites 2 and 
3 caused by a concomitant herbicide treatment in these two 
sites. Finally it is worth noting the missing data of RZSM in 
2018 for site 3 due to sensors not being installed until Fall 
of 2018.

(15)�Eday = S
↓

day

�Ei

S
↓

i

.
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Fig. 3  Timeseries of observed 
daily actual ET (mm day−1 ), 
satellite Leaf Area Index, and 
root zone soil moisture (RZSM 
m 3 m−3 ), stem water potential 
( Ψstem , MPa), and leaf stomatal 
conductance ( gs , mol m−2 s−1)

Fig. 4  Predicted vs. observed scatterplot of hourly fluxes (W  m−2 ) 
during daytime with TSEB initialized using the Priestley–Taylor 
potential transpiration. All four sites and all years 2018–2020 are 
plotted together. N is the number of cases used for validation, RMSE 

is the root mean square error, bias is the mean bias computed as the 
observed minus the predicted, r is the Pearson correlation coefficient 
between the observed and the predicted and d is Willmott’s index of 
agreement (Willmott 1982)
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Bulk surface fluxes

Figure 4 shows the observed vs. predicted scatterplots 
of hourly daytime ( S↓ ≥ 100 W m−2 ) sensible and latent 
heat fluxes for TSEB-PT for all sites and 3 years studied 
between DOY 145 and 245. Table 1 lists the error statistics 
for each sector separately.

These results show the consistency of TSEB-PT in esti-
mating both heat and water vapor fluxes with errors within 
the expected range (50–100 W m−2 ) and strong correlation 
between the observed and the predicted values. Never-
theless, Table 1 shows a lower magnitude of mean bias 
and RMSE for RIP720-1 for both H (3 W m−2 bias and 
44 W m−2 RMSE) and �E ( −34 W m−2 bias and 68 W m−2 
RMSE).

Canopy fluxes

The performance of TSEB-PT in estimating the hourly day-
time canopy fluxes is depicted in Fig. 5. This figure shows 
the validation of canopy latent heat flux (or transpiration) 
using as measured values the flux partitioning ensemble as 
estimated by Thomas et al. (2008) Modified Relaxed Eddy 
Accumulation method and the Zahn et al. (2022) Condi-
tional Eddy Covariance analysis. In addition this figure also 
shows the validation of the stomatal conductance measured 
in situ versus the estimated effective stomatal conductance 
from TSEB, using Eqs. 11 and 12.

The errors on hourly daytime canopy latent heat 
flux shown in Fig. 5 are in the same magnitude range 
than with the hourly daytime bulk latent heat f lux 

Table 1  Site hourly error metrics (W m−2 ) for all valid daytime fluxes 
estimated for TSEB-PT. N is the number of cases used for validation, 
RMSE is the root mean square error, bias is the mean bias computed 

as the observed minus de predicted, r is the Pearson correlation coef-
ficient between the observed and the predicted and d is Willmott’s 
index of agreement (Willmott 1982)

Site – Obs. Bias MAE RMSE r d

N H �E H �E H �E H �E H �E H �E

Rip 720-1 3583 81 283 3 −34 34 54 44 68 0.87 0.96 0.89 0.94
Rip 720-2 3693 81 281 28 −54 42 71 56 86 0.84 0.96 0.78 0.92
Rip 720-3 3695 66 301 29 −45 43 62 54 75 0.91 0.97 0.78 0.95
Rip 720-4 3715 66 300 21 −40 38 63 48 75 0.93 0.96 0.81 0.95

Fig. 5  Predicted (TSEB-PT) vs. observed (EC or gas exchange meas-
urements) scatterplot of daytime hourly left) canopy latent heat flux 
(W m−2 ) and right) stomatal conductance (mol m−2  s−1 ) with TSEB 
initialized using the Priestley–Taylor potential transpiration. All four 
sites are plotted together, with different colours in the case of stoma-

tal conductance. N is the number of cases used for validation, RMSE 
is the root mean square error, bias is the mean bias computed as the 
observed minus the predicted, r is the Pearson correlation coefficient 
between the observed and the predicted and d is Willmott’s index of 
agreement (Willmott 1982)
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(RMSE = 65 W m−2 ), showing the ability of TSEB-PT 
model in ET partitioning between soil evaporation and 
canopy transpiration, despite of the simplicity of the 
Priestley–Taylor approach in defining a first-guess poten-
tial transpiration. This is confirmed when looking at the 
evaluation of the stomatal conductance on the right of 
Fig. 5. Considering the uncertainties in up(downscaling) 
in situ sunlit stomatal conductance (TSEB conductance), 
both metrics agreed reasonably well with minimum bias 
(0.03 mol m−2 s−2 ), low RMSE (0.08 mol m−2 s−2 ) and 
a correlation between the measured and the predicted of 
0.58.

Stress metrics

Daily stress metrics are computed both before noon 
(10:30) and early afternoon (13:30) for the different ver-
sion of CWSI. Considering that in situ measurements are 
sometimes not concurrent and also due to soil moisture 
sensor failures, these correlations are only shown for the 

68 cases, where measurements are coincident, in order to 
make for a more fair inter-comparison between metrics. 
These results are shown in Figs. 6 and 7.

The alternative stress metrics fREF , CTSI and CSSI, are 
also compared to near noon average water potentials (both 
leaf and stem) as well as daily Root Zone Soil Moisture 
in Fig. 8 for the 10:30 observation and Fig. 9 for the early 
afternoon (13:30) observation.

Results of Figs. 8 and 9 show that the highest corre-
lation occurs between the CSSI (related to the stomatal 
conductance estimates) and the root zone soil moisture, 
with a correlation of 0.53 and 0.61 when using observa-
tions before noon and in the early afternoon, respectively. 
It is also worth noting that when evaluating the differ-
ent versions of CWSI, considering a stomatal dependent 
closure on VPD (either within the Penman–Monteith or 
the Shuttleworth–Wallace model) yields better relation-
ship with the in situ root zone soil moisture than when 
the stomatal resistance is set constant. On the other hand 
, CWSI-PMRc,min shows slightly better correlation with 
water potentials than the other two CWSI versions.

Fig. 6  Relationship between CWSI values derived with TSEB-PT 
at 10:30 and (left) leaf water potential, (center) stem water potential 
and (right) root-zone soil moisture content. Potential �E was calcu-
lated from (up) Penman–Monteith model using a constant minimum 
stomatal resistance, (middle) Penman–Monteith model using a VPD 
dependent minimum stomatal resistance, and (bottom) Shuttleworth–
Wallace model using a VPD dependent minimum stomatal resistance. 
Each plot shows the Pearson correlation coefficient between the x- 
and y-metrics and its p value. Ticks and their labels are removed from 
the plots to enhance visibility

Fig. 7  Relationship between CWSI values derived with TSEB-PT 
at 13:30 and (left) leaf water potential, (center) stem water potential 
and (right) root-zone soil moisture content. Potential �E was calcu-
lated from (up) Penman–Monteith model using a constant minimum 
stomatal resistance, (middle) Penman–Monteith model using a VPD 
dependent minimum stomatal resistance, and (bottom) Shuttleworth–
Wallace model using a VPD dependent minimum stomatal resistance. 
Each plot shows the Pearson correlation coefficient between the x- 
and y-metrics and its p value. Ticks and their labels are removed from 
the plots to enhance visibility
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Discussion

Results of this study indicate that TSEB is capable of 
providing reliable estimates of soil/substrate and canopy 
energy and canopy fluxes in a vineyard subject to different 
water stress events. The range of errors when validating 
hourly sensible and latent heat fluxes (Fig. 4) are within 
the expected uncertainty of the models and measurements 
(50–100 W m−2 ), with RMSE values of 51 and 76 W m−2 
for sensible and latent heat fluxes, respectively. Other 
studies showed a similar range of errors in other locations 
(Nieto et al. 2019a) and under a larger evaporative demand 
(Kustas et al. 2022).

However, it must be also considered that in situ meas-
urements of energy and water fluxes are not free of uncer-
tainties, such as the evidence of a lack of closure in the 
energy balance of the Eddy Covariance Systems (Bambach 
et al. 2022).

Is TSEB actual transpiration and/or stomatal con-
ductance a better proxy for crop stress than bulk evapo-
transpiration? This study made a significant step in the 
assessment of TSEB model by evaluating for the first 
time (to the authors’ knowledge) the performance of the 
model in deriving the stomatal conductance, by assess-
ing these estimates against in situ gas exchange measure-
ments. Results of Fig. 5 are promising, as TSEB-PT pro-
duced minimum bias (0.03 mol m−2 s−1 ) and low RMSE 
(0.08 mol m−2 s−1 ), although the explained variability of 
gs by TSEB is marginal ( r = 0.58 ) compared to the model 
performance in estimating ET or the canopy latent heat 
fluxes. In this regard, it is worth noting that upscaling 
in situ gs (bottom-up approach) is challenging in cases, 
where a significant spatial variability of conductance/veg-
etation stress exists (Baldocchi et al. 1991), while these 
measurements are typically performed on a small sample 
of leaves within the canopy and in most case only on the 
sunlit fraction (such as in this study). On the other hand, 
the (top-down) inversion of the resistance scheme of Fig. 1 
produced a rather effective leaf stomatal conductance, as 
an integrated value of the conductances of all sunlit and 
shaded leaves in the canopy. Finally, several other downs-
caling methods, or top-down approaches, have attempted 
to estimate canopy conductance to provide cost-effective 
and spatially distributed fields of gs by remote sensing data 
(Taconet et al. 1995; Jones 1999; Leinonen et al. 2006; 
Berni et al. 2009), but most of these approaches are based 
on a single-source or “big-leaf” models based on the Pen-
man–Monteith equation, and therefore, they usually con-
sist in a bulk canopy conductance (Baldocchi et al. 1991). 
Recently, Wehr and Saleska (2021) proposed a top-down 
approach that is based on the flux-gradient equation and 
includes as well a leaf boundary layer resistance, instead 

Fig. 8  Relationship between the TSEB-PT alternative crop stress 
metrics at 10:30 and (left) leaf water potential, (center) stem water 
potential and (right) root zone soil moisture content. Each plot shows 
the Pearson correlation coefficient between the x- and y-metrics 
and its p value. Ticks and their labels are removed from the plots to 
enhance visibility

Fig. 9  Relationship between the TSEB-PT alternative crop stress 
metrics at 13:30 and (left) leaf water potential, (center) stem water 
potential and (right) root zone soil moisture content. Each plot shows 
the Pearson correlation coefficient between the x- and y-metrics 
and its p value. Ticks and their labels are removed from the plots to 
enhance visibility
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of inverting Penman–Monteith equation. Figure 10 shows 
the comparison between TSEB-PT derived gs and the sto-
mata conductance inverted by Wehr and Saleska (2021) 
approach, in which the in situ canopy EC flux data were 
used only for the cases with available in situ gs measure-
ments. Both estimates agree well each other and hence 
yield more similar values compared to the results using 
in situ measurements, as shown in Fig. 5b. It is noteworthy 
that while the in situ gas exchange measurements corre-
spond to 3–5 leaves that are considered representiative of 
the whole sunlit fraction of the canopy, both TSEB-PT 
and Wehr and Saleska (2021) derive effective values of gs 
by downscaling canopy fluxes and, therefore, represent a 
stomatal conductance representative of a leaf under mean 
environmental conditions. Thus, discrepancies between 
leaf level observations of gs at full light and estimations 
of a leaf theoretically exposed to mean light conditions is 
expected.

Finally, the correlations between the different TSEB 
stress metrics and the in situ measurements (Figs. 6, 7, 8 
and 9) showed that the best performing pair was the use 
of the actual to maximum leaf stomatal conductance ratio 
(CSSI) and the root zone soil moisture, with a correlation 
of 0.53 and 0.61 depending on whether a before noon or an 
early afternoon is used for the remote sensing acquisition, 
outperforming even the use of the actual to potential tran-
spiration ratio (CTSI).

Does the Shuttleworth–Wallace model provide any 
advantage over the Penman–Monteith model to evaluate 

crop potential needs, and hence CWSI? The different CWSI 
methods, either using the Penman–Monteith or Shut-
tleworth–Wallace, tend to yield better results than CTSI 
(computed from the Shuttleworth–Wallace model) despite 
CWSI using ET, while CTSI uses only information on the 
canopy transpiration. This is somewhat opposite to what was 
observed by Bellvert et al. (2020), in which they showed a 
more robust behaviour between TSEB transpiration and stem 
water potential than using TSEB ET. One of the plausible 
explanations for this poorer performance of CTSI can be due 
to the definition of the term “potential”. Usually the poten-
tial ET is defined as a surface with a rather dry top-soil but 
with plenty of water at the root-zone, or simply a “big-leaf” 
canopy. However, it is worth noting that the soil surface 
moisture affects not only the bulk ET (via soil evaporation) 
but also the evaporative demand by the canopy, and hence 
the transpiration rate. A dry and exposed soil surface will 
release hot and dry air parcels towards the canopy, increas-
ing the temperature and VPD at the canopy–air interface, 
and hence increasing its evaporative demand (e.g., Kustas 
and Norman 1999). On the contrary, a wet soil surface will 
enhance the convection of cool and moist air parcels towards 
the canopy, and thus reducing its evaporative demand. This 
effect is well accounted for in the Shuttleworth–Wallace 
model, as it is a layered model with resistances in series 
through Eq. 12. Therefore, for any given crop phenological 
status, root-zone soil moisture and atmospheric forcing, the 
transpiration rate at the canopy would vary depending on 
the surface soil moisture, and hence the calculation of crop 
potential needs should ideally account for this issue.

Advantages and limitations of using stem/leaf water 
potential, stomatal conductance and canopy transpiration 
for tracking variations of root-zone soil moisture Water 
potentials tend to show a poorer performance to the TSEB 
stress indices, particularly for the case of the leaf water 
potential (Figs. 6, 7, 8 and 9). Only when using the standard 
CWSI, computed with the Penman–Monteith model with a 
fixed canopy resistance of 50 s m−1 , the stem water potential 
tends to show slightly better performance than with the root-
zone soil moisture. Several authors have already pointed out 
the limitations of leaf or stem water potential in robustly 
tracking water stress (Flexas et al. 2004; Jones 2004; García-
Tejera et al. 2021). One of these limitations are related to the 
canopy growth, and in the case of vineyards, their canopy 
management interventions (e.g., pruning, leafing, hedging), 
which modifies the root to leaf area ratio and hence the 
hydraulic conductivity of the soil–plant-atmosphere con-
tinuum. Indeed, some studies that related remote sensing 
metrics to water potential usually found that these empiri-
cal relations are significantly different among phenological 
stages (Bellvert et al. 2015, 2016). Furthermore, the severity 
and length of the water stress events vary depending on the 
growth and canopy environment as well as the production 

Fig. 10  Intercomparison between gs retrieved from TSEB-PT and 
using Wehr and Saleska (2021) model for the same cases shown in 
Fig. 5b
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objective, and the physiological response of plants and vine 
varieties to the various deficit irrigation strategies adds up 
to the difficulty of interpreting the same value of midday Ψ 
across different scenarios. Stomatal conductance ( gs ) pro-
vides an added value to the water potential as it links the 
fluxes of water and CO2 in plants (Farquhar and Sharkey 
1982), and consequently between transpiration and photo-
synthesis (Jarvis 1976; Escalona et al. 1999). Therefore, gs 
affects processes related to the crop physiology, but as well 
as on the atmosphere chemistry, the water cycle and the cli-
mate at different scales (Baldocchi et al. 1991). The value 
of gs is, therefore, a key factor not only used for assessing 
vegetation stress, but also in modelling carbon uptake and 
crop productivity (Escalona et al. 1999; Jones et al 2002).

Despite the fact that several studies have proposed Ψ 
thresholds as the triggering event when applying irrigation 
(Girona et al. 2006; van Leeuwen et al. 2009; Intrigliolo 
et al. 2016; Merli et al. 2016), and that may be a good strat-
egy for the scenarios, where the thresholds were established, 
the results of this study agree better with other studies that 
suggest using gs instead (Jones 1999; Flexas et al. 2004). 
Indeed, the correlation of the in situ near noon measure-
ments of gs , water potentials and root-zone soil moisture 
are depicted in Fig. 11, showing that the strongest correla-
tion is between the observed gs and root-zone soil moisture 
( r = 0.57 ), while the correlation between water potentials 
and RZSM are lower and non-significant (p value > 0.05).

Timing of thermal measurements One of the advantages 
of using continuous in situ thermal infrared measurements 
is that they permit model benchmarking at different times of 
the day, regardless of the cloud coverage conditions. Results 
of Figs. 6 and 8, in which the TSEB metrics were obtained 
from an observation before noon (10:30), together with 

Figs. 7 and 9 shows that an observation earlier in the after-
noon (13:30) tends to better explain the stress conditions, 
with higher correlation between the stress indices and the 
in situ measurements. This is particularly evident with the 
significant increase of correlation between CSSI and RZSM, 
from 0.53 (Fig. 8) to 0.61 (Fig. 8). These results suggests 
that a thermal infrared observation around 13:30 would pro-
vide better information than at 10:30, when the overpass of 
most of the satellite thermal missions (e.g., Landsat) occur. 
This issue would support the mission requirements of the 
Sentinel Candidate Mission LSTM (Land Surface Tempera-
ture Monitoring) described in Koetz et al. (2021). LSTM 
will carry onboard a high resolution thermal infrared sensor 
(30–50 m resolution) with a revisit frequency of 1–3 days. 
It also verifies the advantage of a satellite system, such as 
ECOSTRESS sensor, currently on the International Space 
Station, occasionally providing an afternoon land surface 
temperature over the same area (Anderson et al. 2021). How-
ever, as shown by Kustas et al. (2022), observations in the 
afternoon are expected to be affected by advection of dry and 
hot air masses from dry areas into irrigated fields, posing a 
challenge in modeling sensible and latent heat fluxes and 
hence stress indices.

Conclusions

This study evaluated whether the TSEB model was able to 
explain water stress conditions, by relating canopy and leaf 
metrics, such as evapotranspiration, transpiration, or sto-
matal conductance, with measurements collected in an irri-
gated vineyard in California subject to several stress events. 
Results confirmed the ability of TSEB in modelling latent 
heat fluxes both bulk and canopy, but moved one step for-
ward and showed as well the potential of TSEB in retrieving 
effective values of leaf stomatal conductance.

From the metrics computed, the best performing stress 
index was the ratio of actual over maximum stomatal con-
ductance (named in this study as Crop Stomatal Stress 
Index), which was able to explain the spatio-temporal vari-
ability of root-zone soil moisture and, to a lesser degree, the 
leaf and stem water potentials. Regarding the water poten-
tials, the results confirmed the limitation of this metric, an 
issue that has been previously pointed out. Therefore, irri-
gation schedule practices should consider the limitations of 
using the water potential as the reference index for trigger-
ing and/or quantifying irrigation, especially since stomatal 
conductance seem to be better correlated to root-zone soil 
moisture content than leaf or stem water potentials. The 
TSEB crop stress metrics showed a better correlation with 
the in situ measurements when the thermal infrared acquisi-
tion was taken early in the afternoon, confirming the goal 
overpass time of LSTM mission. However, it is worth noting 

Fig. 11  Relationship between in situ measurements of stomatal con-
ductance ( gs , leaf water potential ( Ψleaf ), stem water potential ( Ψstem 
and root zone soil moisture (RZSM). The correlation between leaf 
and stem water potential is 0.86 (p value < 0.01 ), (not shown as a 
scatterplot). All plots represent the same number of cases ( N = 47 ) 
and each plot shows the Pearson correlation coefficient between the x- 
and y-metrics and its p value. Ticks and their labels are removed from 
the plots to enhance visibility
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that this study does not aim to evaluate errors in daily ET 
daily at different overpass times. This is a different topic that 
has already been addressed (e.g., Nassar et al. 2021), which 
still needs further investigation.

Finally, it is worth emphasizing that the degree of stoma-
tal closure is the plant’s way at preventing plant desiccation 
while maximizing the passage of CO2 . Therefore, it is also a 
crucial variable for modelling/predicting plant productivity 
and hence yield. However, the relationship between tran-
spiration and assimilation rates is not linear (Farquhar and 
Sharkey 1982), which makes the modelling of CO2 challeng-
ing. Therefore, in a future study it is planned to integrate the 
TSEB conductance retrievals into an assimilation model to 
perform joint predictions of heat, water and CO2 fluxes.

Acknowledgements Funding and logistical support for the GRAPEX 
project were provided by E. & J. Gallo Winery and from the NASA 
Applied Sciences-Water Resources Program (Grant no. NNH17AE39I). 
This research was also supported in part by the U.S. Department of 
Agriculture, Agricultural Research Service. In addition, we thank the 
staff of Viticulture, Chemistry and Enology Division of E. & J. Gallo 
Winery for the collection and processing of field data and the coop-
eration of the vineyard management staff for logistical support and 
coordinating field operations with the GRAPEX team.

Funding Open Access funding provided thanks to the CRUE-CSIC 
agreement with Springer Nature.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alfieri JG, Kustas WP, Nieto H et al (2019a) Influence of wind direc-
tion on the surface roughness of vineyards. Irrig Sci 37(3):359–
373. https:// doi. org/ 10. 1007/ s00271- 018- 0610-z

Alfieri JG, Kustas WP, Prueger JH et al (2019b) A multi-year inter-
comparison of micrometeorological observations at adjacent 
vineyards in California’s Central Valley during GRAPEX. Irrig 
Sci 37(3):345–357. https:// doi. org/ 10. 1007/ s00271- 018- 0599-3

Allen R, Pereira L, Raes D et al (1998) Crop evapotranspiration-guide-
lines for computing crop water requirements—FAO irrigation and 

drainage paper 56. Technical report, FAO—Food and Agriculture 
Organization of the United Nations

Anderson MC, Zolin CA, Sentelhas PC et al (2016) The Evaporative 
Stress Index as an indicator of agricultural drought in Brazil: an 
assessment based on crop yield impacts. Remote Sens Environ 
174:82–99. https:// doi. org/ 10. 1016/j. rse. 2015. 11. 034

Anderson MC, Yang Y, Xue J et al (2021) Interoperability of ECOS-
TRESS and Landsat for mapping evapotranspiration time series 
at sub-field scales. Remote Sens Environ 252(112):189. https:// 
doi. org/ 10. 1016/j. rse. 2020. 112189

Baldocchi DD, Luxmoore RJ, Hatfield JL (1991) Discerning the forest 
from the trees: an essay on scaling canopy stomatal conductance. 
Agric For Meteorol 54(2):197–226. https:// doi. org/ 10. 1016/ 0168- 
1923(91) 90006-C

Bambach N, Alfieri J, Prueger J et al (2022) Canopy level evapotran-
spiration uncertainty: the impact of different data processing and 
energy budget closure methods. Irrig Sci (in review)

Bellvert J, Marsal J, Girona J et al (2015) Seasonal evolution of crop 
water stress index in grapevine varieties determined with high-
resolution remote sensing thermal imagery. Irrig Sci 33(2):81–93. 
https:// doi. org/ 10. 1007/ s00271- 014- 0456-y

Bellvert J, Zarco-Tejada P, Marsal J et al (2016) Vineyard irrigation 
scheduling based on airborne thermal imagery and water potential 
thresholds. Aust J Grape Wine Res 22(2):307–315. https:// doi. org/ 
10. 1111/ ajgw. 12173

Bellvert J, Jofre-Ĉekalović C, Pelechá A et al (2020) Feasibility of 
using the Two-Source Energy Balance model (TSEB) with Sen-
tinel-2 and Sentinel-3 images to analyze the spatio-temporal vari-
ability of vine water status in a vineyard. Remote Sens. https:// doi. 
org/ 10. 3390/ rs121 42299

Berni J, Zarco-Tejada P, Sepulcre-Cantó G et al (2009) Mapping can-
opy conductance and CWSI in olive orchards using high reso-
lution thermal remote sensing imagery. Remote Sens Environ 
113(11):2380–2388. https:// doi. org/ 10. 1016/j. rse. 2009. 06. 018

Bravdo B, Hepner Y, Loinger C et al (1985) Effect of irrigation and 
crop level on growth, yield and wine quality of cabernet sauvi-
gnon. Am J Enol Vitic 36(2):132–139

Cammalleri C, Anderson MC, Kustas WP (2014) Upscaling of 
evapotranspiration fluxes from instantaneous to daytime scales 
for thermal remote sensing applications. Hydrol Earth Syst Sci 
18(5):1885–1894. https:// doi. org/ 10. 5194/ hess- 18- 1885- 2014

Chen F, Lei F, Knipper K et al (2022) Application of the vineyard data 
assimilation (VIDA) system to vineyard root-zone soil moisture 
monitoring in the California Central Valley. Irrig Sci (in review)

Cifre J, Bota J, Escalona J et al (2005) Physiological tools for irriga-
tion scheduling in grapevine (Vitis vinifera L.): an open gate to 
improve water-use efficiency? Agric Ecosyst Environ 106(2):159–
170. https:// doi. org/ 10. 1016/j. agee. 2004. 10. 005

Colaizzi P, Agam N, Tolk J et al (2014) Two-source energy balance 
model to calculate E, T, and ET: comparison of Priestley–Taylor 
and Penman–Monteith formulations and two time scaling meth-
ods. Trans ASABE 57(2):479–498. https:// doi. org/ 10. 13031/ trans. 
57. 10423

De Pury DGG, Farquar GD (1997) Simple scaling of photosynthesis 
from leaves to canopies without the errors of big-leaf models. 
Plant Cell Environ 20(5):537–557. https:// doi. org/ 10. 1111/j. 1365- 
3040. 1997. 00094.x

Duursma RA, Blackman CJ, Lopéz R et al (2019) On the minimum leaf 
conductance: its role in models of plant water use, and ecological 
and environmental controls. New Phytol 221(2):693–705. https:// 
doi. org/ 10. 1111/ nph. 15395

Eastham J, Gray SA (1998) A preliminary evaluation of the suitability 
of sap flow sensors for use in scheduling vineyard irrigation. Am 
J Enol Vitic 49(2):171–176

Escalona JM, Flexas J, Medrano H (1999) Stomatal and non-stomatal 
limitations of photosynthesis under water stress in field-grown 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00271-018-0610-z
https://doi.org/10.1007/s00271-018-0599-3
https://doi.org/10.1016/j.rse.2015.11.034
https://doi.org/10.1016/j.rse.2020.112189
https://doi.org/10.1016/j.rse.2020.112189
https://doi.org/10.1016/0168-1923(91)90006-C
https://doi.org/10.1016/0168-1923(91)90006-C
https://doi.org/10.1007/s00271-014-0456-y
https://doi.org/10.1111/ajgw.12173
https://doi.org/10.1111/ajgw.12173
https://doi.org/10.3390/rs12142299
https://doi.org/10.3390/rs12142299
https://doi.org/10.1016/j.rse.2009.06.018
https://doi.org/10.5194/hess-18-1885-2014
https://doi.org/10.1016/j.agee.2004.10.005
https://doi.org/10.13031/trans.57.10423
https://doi.org/10.13031/trans.57.10423
https://doi.org/10.1111/j.1365-3040.1997.00094.x
https://doi.org/10.1111/j.1365-3040.1997.00094.x
https://doi.org/10.1111/nph.15395
https://doi.org/10.1111/nph.15395


711Irrigation Science (2022) 40:697–713 

1 3

grapevines. Funct Plant Biol 26(5):421–433. https:// doi. org/ 10. 
1071/ PP990 19

Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosyn-
thesis. Annu Rev Plant Physiol 33(1):317–345

Flexas J, Bota J, Cifre J et al (2004) Understanding down-regulation 
of photosynthesis under water stress: future prospects and search-
ing for physiological tools for irrigation management. Ann Appl 
Biol 144(3):273–283. https:// doi. org/ 10. 1111/j. 1744- 7348. 2004. 
tb003 43.x

Gao F, Kustas WP, Anderson MC (2012) A data mining approach 
for sharpening thermal satellite imagery over land. Remote Sens 
4(11):3287–3319. https:// doi. org/ 10. 3390/ rs411 3287

García-Tejera O, López-Bernal A, Orgaz F et al (2021) The pitfalls 
of water potential for irrigation scheduling. Agric Water Manag 
243(106):522. https:// doi. org/ 10. 1016/j. agwat. 2020. 106522

Ginestar C, Eastham J, Gray S et al (1998) Use of sap-flow sen-
sors to schedule vineyard irrigation. I. Effects of post-veraison 
water deficits on water relations, vine growth, and yield of shi-
raz grapevines. Am J Enol Vitic 49(4):413–420

Girona J, Mata M, del Campo J, Arbonés A et al (2006) The use 
of midday leaf water potential for scheduling deficit irrigation 
in vineyards. Irrig Sci 24(2):115–127. https:// doi. org/ 10. 1007/ 
s00271- 005- 0015-7

González-Dugo V, Zarco-Tejada P, Fereres E (2014) Applicability 
and limitations of using the crop water stress index as an indica-
tor of water deficits in citrus orchards. Agric For Meteorol 198–
199:94–104. https:// doi. org/ 10. 1016/j. agrfo rmet. 2014. 08. 003

Hillel D (1998) Environmental soil physics. Academic Press, 
Cambridge

Inoue Y, Kimball BA, Jackson RD et al (1990) Remote estimation of 
leaf transpiration rate and stomatal resistance based on infrared 
thermometry. Agric For Meteorol 51(1):21–33. https:// doi. org/ 
10. 1016/ 0168- 1923(90) 90039-9

Intrigliolo D, Lizama V, García-Esparza M et al (2016) Effects of 
post-veraison irrigation regime on Cabernet Sauvignon grape-
vines in Valencia, Spain: yield and grape composition. Agric 
Water Manag 170:110–119. https:// doi. org/ 10. 1016/j. agwat. 
2015. 10. 020

Jackson RD, Idso SB, Reginato RJ et al (1981) Canopy temperature as 
a crop water stress indicator. Water Resour Res 17(4):1133–1138. 
https:// doi. org/ 10. 1029/ WR017 i004p 01133

Jarvis PG (1976) The interpretation of the variations in leaf water 
potential and stomatal conductance found in canopies in the field. 
Philos Trans R Soc Lond B Biol Sci 273(927):593–610. https:// 
doi. org/ 10. 1098/ rstb. 1976. 0035

Jarvis P, McNaughton K (1986) Stomatal control of transpiration: scal-
ing up from leaf to region. In: Advances in ecological research, 
vol 15. Academic Press, Cambridge, pp 1–49. https:// doi. org/ 10. 
1016/ S0065- 2504(08) 60119-1

Jones HG (1999) Use of thermography for quantitative studies of 
spatial and temporal variation of stomatal conductance over leaf 
surfaces. Plant Cell Environ 22(9):1043–1055. https:// doi. org/ 10. 
1046/j. 1365- 3040. 1999. 00468.x

Jones HG (2004) Irrigation scheduling: advantages and pitfalls of 
plant-based methods. J Exp Bot 55(407):2427–2436. https:// doi. 
org/ 10. 1093/ jxb/ erh213

Jones HG, Stoll M, Santos T et al (2002) Use of infrared thermog-
raphy for monitoring stomatal closure in the field: application 
to grapevine. J Exp Bot 53(378):2249–2260. https:// doi. org/ 10. 
1093/ jxb/ erf083

Kang Y, Gao F, Anderson M, et al (2022) Evaluation of satellite leaf 
area index in California vineyards for improving water use estima-
tion. Irrig Sci (in review)

Knipper KR, Kustas WP, Anderson MC et al (2019) Evapotranspi-
ration estimates derived using thermal-based satellite remote 
sensing and data fusion for irrigation management in California 

vineyards. Irrig Sci 37(3):431–449. https:// doi. org/ 10. 1007/ 
s00271- 018- 0591-y

Knipper K, Kustas W, Anderson M et al (2020) Using high-spatiotem-
poral thermal satellite ET retrievals to monitor water use over 
California vineyards of different climate, vine variety and trel-
lis design. Agric Water Manag 241(106):361. https:// doi. org/ 10. 
1016/j. agwat. 2020. 106361

Koetz B, Bastiaanssen W, Berger M, et al (2018) High spatio-temporal 
resolution land surface temperature mission—a Copernicus can-
didate mission in support of agricultural monitoring. In: IGARSS 
2018—2018 IEEE international geoscience and remote sensing 
symposium, pp 8160–8162. https:// doi. org/ 10. 1109/ IGARSS. 
2018. 85174 33

Koetz B, Baschek B, Bastiaanssen W, et al (2021) Copernicus high 
spatio-temporal resolution Land Surface Temperature Mission: 
mission requirements document. Technical report. ESA-EOPSM-
HSTR-MRD-3276, European Space Agency

Kondo J, Ishida S (1997) Sensible heat flux from the Earth’s surface 
under natural convective conditions. J Atmos Sci 4:54. https://
doi.org/10.1175/1520-0469(1997)054⟨0498:SHFFTE⟩2.0.CO;2

Kustas WP, Norman JM (1999) Evaluation of soil and vegetation 
heat flux predictions using a simple two-source model with 
radiometric temperatures for partial canopy cover. Agric For 
Meteorol 94(1):13–29. https:// doi. org/ 10. 1016/ S0168- 1923(99) 
00005-2

Kustas WP, Nieto H, Morillas L et al (2016) Revisiting the paper 
“Using radiometric surface temperature for surface energy flux 
estimation in Mediterranean drylands from a two-source per-
spective’’. Remote Sens Environ 184:645–653. https:// doi. org/ 
10. 1016/j. rse. 2016. 07. 024

Kustas WP, Anderson MC, Alfieri JG et al (2018) The grape remote 
sensing atmospheric profile and evapotranspiration experiment. 
Bull Am Meteorol Soc 99(9):1791–1812. https:// doi. org/ 10. 
1175/ BAMS-D- 16- 0244.1

Kustas WP, Nieto H, García-Tejera O et  al (2022) Impact of 
advection on Two-Source Energy Balance (TSEB) model 
canopy transpiration parameterization for vineyards in the 
California Central Valley. Irrig Sci. https:// doi. org/ 10. 1007/ 
s00271- 022- 00778-y

Leinonen I, Grat OM, Tagliavia CPP et al (2006) Estimating sto-
matal conductance with thermal imagery. Plant Cell Environ 
29(8):1508–1518. https:// doi. org/ 10. 1111/j. 1365- 3040. 2006. 
01528.x

Leuning R (1995) A critical appraisal of a combined stomatal-photo-
synthesis model for C3 plants. Plant Cell Environ 18(4):339–355. 
https:// doi. org/ 10. 1111/j. 1365- 3040. 1995. tb003 70.x

Liang S, Wang K, Zhang X et al (2010) Review on estimation of land 
surface radiation and energy budgets from ground measurement, 
remote sensing and model simulations. IEEE J Sel Top Appl 
Earth Observ Remote Sens 3(3):225–240. https:// doi. org/ 10. 1109/ 
JSTARS. 2010. 20485 56

Liebethal C, Foken T (2007) Evaluation of six parameterization 
approaches for the ground heat flux. Theor Appl Climatol 88(1–
2):43–56. https:// doi. org/ 10. 1007/ s00704- 005- 0234-0

Lopez G, Behboudian MH, Girona J et al (2012) Drought in decidu-
ous fruit trees: implications for yield and fruit quality. In: Plant 
responses to drought stress. Springer, Berlin, pp 441–459. https:// 
doi. org/ 10. 1007/ 978-3- 642- 32653-0_ 17

Merli M, Magnanini E, Gatti M et al (2016) Water stress improves 
whole-canopy water use efficiency and berry composition of 
cv. Sangiovese (Vitis vinifera L.) grapevines grafted on the new 
drought-tolerant rootstock m4. Agric Water Manag 169:106–114. 
https:// doi. org/ 10. 1016/j. agwat. 2016. 02. 025

Monteith JL (1995) A reinterpretation of stomatal responses to humid-
ity. Plant Cell Environ 18(4):357–364. https:// doi. org/ 10. 1111/j. 
1365- 3040. 1995. tb003 71.x

https://doi.org/10.1071/PP99019
https://doi.org/10.1071/PP99019
https://doi.org/10.1111/j.1744-7348.2004.tb00343.x
https://doi.org/10.1111/j.1744-7348.2004.tb00343.x
https://doi.org/10.3390/rs4113287
https://doi.org/10.1016/j.agwat.2020.106522
https://doi.org/10.1007/s00271-005-0015-7
https://doi.org/10.1007/s00271-005-0015-7
https://doi.org/10.1016/j.agrformet.2014.08.003
https://doi.org/10.1016/0168-1923(90)90039-9
https://doi.org/10.1016/0168-1923(90)90039-9
https://doi.org/10.1016/j.agwat.2015.10.020
https://doi.org/10.1016/j.agwat.2015.10.020
https://doi.org/10.1029/WR017i004p01133
https://doi.org/10.1098/rstb.1976.0035
https://doi.org/10.1098/rstb.1976.0035
https://doi.org/10.1016/S0065-2504(08)60119-1
https://doi.org/10.1016/S0065-2504(08)60119-1
https://doi.org/10.1046/j.1365-3040.1999.00468.x
https://doi.org/10.1046/j.1365-3040.1999.00468.x
https://doi.org/10.1093/jxb/erh213
https://doi.org/10.1093/jxb/erh213
https://doi.org/10.1093/jxb/erf083
https://doi.org/10.1093/jxb/erf083
https://doi.org/10.1007/s00271-018-0591-y
https://doi.org/10.1007/s00271-018-0591-y
https://doi.org/10.1016/j.agwat.2020.106361
https://doi.org/10.1016/j.agwat.2020.106361
https://doi.org/10.1109/IGARSS.2018.8517433
https://doi.org/10.1109/IGARSS.2018.8517433
https://doi.org/10.1016/S0168-1923(99)00005-2
https://doi.org/10.1016/S0168-1923(99)00005-2
https://doi.org/10.1016/j.rse.2016.07.024
https://doi.org/10.1016/j.rse.2016.07.024
https://doi.org/10.1175/BAMS-D-16-0244.1
https://doi.org/10.1175/BAMS-D-16-0244.1
https://doi.org/10.1007/s00271-022-00778-y
https://doi.org/10.1007/s00271-022-00778-y
https://doi.org/10.1111/j.1365-3040.2006.01528.x
https://doi.org/10.1111/j.1365-3040.2006.01528.x
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1109/JSTARS.2010.2048556
https://doi.org/10.1109/JSTARS.2010.2048556
https://doi.org/10.1007/s00704-005-0234-0
https://doi.org/10.1007/978-3-642-32653-0_17
https://doi.org/10.1007/978-3-642-32653-0_17
https://doi.org/10.1016/j.agwat.2016.02.025
https://doi.org/10.1111/j.1365-3040.1995.tb00371.x
https://doi.org/10.1111/j.1365-3040.1995.tb00371.x


712 Irrigation Science (2022) 40:697–713

1 3

Nassar A, Torres-Rua A, Kustas W et al (2021) Assessing daily evapo-
transpiration methodologies from one-time-of-day sUAS and EC 
information in the GRAPEX project. Remote Sens. https:// doi. 
org/ 10. 3390/ rs131 52887

Nieto H, Kustas WP, Alfieri JG et al (2019a) Impact of different within-
canopy wind attenuation formulations on modelling sensible heat 
flux using TSEB. Irrig Sci 37(3):315–331. https:// doi. org/ 10. 1007/ 
s00271- 018- 0611-y

Nieto H, Kustas WP, Torres-Rúa A et al (2019b) Evaluation of TSEB 
turbulent fluxes using different methods for the retrieval of soil 
and canopy component temperatures from UAV thermal and 
multispectral imagery. Irrig Sci 37(3):389–406. https:// doi. org/ 
10. 1007/ s00271- 018- 0585-9

Norman JM, Kustas WP, Humes KS (1995) Source approach for 
estimating soil and vegetation energy fluxes in observations of 
directional radiometric surface temperature. Agric For Meteorol 
77(3–4):263–293. https:// doi. org/ 10. 1016/ 0168- 1923(95) 02265-Y

Parry CK, Nieto H, Guillevic P et al (2019) An intercomparison of 
radiation partitioning models in vineyard canopies. Irrig Sci 
37(3):239–252. https:// doi. org/ 10. 1007/ s00271- 019- 00621-x

Patakas A, Noitsakis B, Chouzouri A (2005) Optimization of irrigation 
water use in grapevines using the relationship between transpira-
tion and plant water status. Agric Ecosyst Environ 106(2):253–
259. https:// doi. org/ 10. 1016/j. agee. 2004. 10. 013

Priestley CHB, Taylor RJ (1972) On the assessment of surface heat 
flux and evaporation using large-scale parameters. Mon Weather 
Rev 100(2):81–92. https://doi.org/10.1175/1520-0493(1972)100⟨
0081:OTAOSH⟩2.3.CO;2

Raupach MR (1994) Simplified expressions for vegetation roughness 
length and zero-plane displacement as functions of canopy height 
and area index. Bound Layer Meteorol 71(1):211–216. https:// doi. 
org/ 10. 1007/ BF007 09229

Romero P, Fernández-Fernández JI, Martínez-Cutillas A (2010) Physi-
ological thresholds for efficient regulated deficit-irrigation man-
agement in winegrapes grown under semiarid conditions. Am J 
Enol Vitic 61(3):300–312

Santanello JA, Friedl MA (2003) Diurnal covariation in soil heat flux 
and net radiation. J Appl Meteorol 42(6):851–862. https://doi.
org/10.1175/1520-0450(2003)042⟨0851:DCISHF⟩2.0.CO;2

Sauer TJ, Norman JM, Tanner CB et al (1995) Measurement of heat 
and vapor transfer coefficients at the soil surface beneath a maize 
canopy using source plates. Agric For Meteorol 75(1–3):161–189. 
https:// doi. org/ 10. 1016/ 0168- 1923(94) 02209-3

Scholander PF, Bradstreet ED, Hemmingsen EA et al (1965) Sap pres-
sure in vascular plants. Science 148(3668):339–346. https:// doi. 
org/ 10. 1126/ scien ce. 148. 3668. 339

Shaw RH, Pereira A (1982) Aerodynamic roughness of a plant canopy: 
a numerical experiment. Agric Meteorol 26(1):51–65. https:// doi. 
org/ 10. 1016/ 0002- 1571(82) 90057-7

Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an 
energy combination theory. Q J R Meteorol Soc 111(469):839–
855. https:// doi. org/ 10. 1002/ qj. 49711 146910

Sobrino JA, Jiménez-Muñoz JC, Verhoef W (2005) Canopy directional 
emissivity: comparison between models. Remote Sens Environ 
99(3):304–314. https:// doi. org/ 10. 1016/j. rse. 2005. 09. 005

Sun L, Gao F, Anderson MC et al (2017) Daily mapping of 30 m 
LAI and NDVI for grape yield prediction in California vineyards. 
Remote Sens. https:// doi. org/ 10. 3390/ rs904 0317

Taconet O, Olioso A, Mehrez MB et al (1995) Seasonal estimation of 
evaporation and stomatal conductance over a soybean field using 
surface IR temperatures. Agric For Meteorol 73(3–4):321–337. 
https:// doi. org/ 10. 1016/ 0168- 1923(94) 05082-H

Thomas C, Martin J, Goeckede M et al (2008) Estimating daytime 
subcanopy respiration from conditional sampling methods applied 
to multi-scalar high frequency turbulence time series. Agric For 
Meteorol 148(8):1210–1229. https:// doi. org/ 10. 1016/j. agrfo rmet. 
2008. 03. 002

van Leeuwen C, Trégoat O, Choné X et al (2009) Vine water status is a 
key factor in grape ripening and vintage quality for red Bordeaux 
wine. How can it be assessed for vineyard management purposes? 
OENO One 43(3):121–134. https:// doi. org/ 10. 20870/ oeno- one. 
2009. 43.3. 798

Wehr R, Saleska SR (2021) Calculating canopy stomatal conductance 
from eddy covariance measurements, in light of the energy budget 
closure problem. Biogeosciences 18(1):13–24. https:// doi. org/ 10. 
5194/ bg- 18- 13- 2021

Willmott CJ (1982) Some comments on the evaluation of model per-
formance. Bull Am Meteorol Soc 63(11):1309–1313. https://doi.
org/10.1175/1520-0477(1982)063⟨1309:SCOTEO⟩2.0.CO;2

Zahn E, Bou-Zeid E, Good SP et al (2022) Direct partitioning of eddy-
covariance water and carbon dioxide fluxes into ground and plant 
components. Agric For Meteorol 315(108):790. https:// doi. org/ 
10. 1016/j. agrfo rmet. 2021. 108790

Zúñiga M, Ortega-Farías S, Fuentes S et al (2018) Effects of three 
irrigation strategies on gas exchange relationships, plant water 
status, yield components and water productivity on grafted Car-
ménère grapevines. Front Plant Sci. https:// doi. org/ 10. 3389/ fpls. 
2018. 00992

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Héctor Nieto1,2  · María Mar Alsina3 · William P. Kustas4 · Omar García‑Tejera5 · Fan Chen4 · Nicolas Bambach6 · 
Feng Gao4 · Joseph G. Alfieri4 · Lawrence E. Hipps7 · John H. Prueger8 · Lynn G. McKee4 · Einara Zahn9 · 
Elie Bou‑Zeid9 · Andrew J. McElrone10 · Sebastian J. Castro10,11 · Nick Dokoozlian3

 María Mar Alsina 
 MariadelMar.Alsina@ejgallo.com

 William P. Kustas 
 bill.kustas@usda.gov

 Omar García-Tejera 
 ogarcia@ias.csic.es

 Fan Chen 
 fan.chen@usda.gov

 Nicolas Bambach 
 nbambach@ucdavis.edu

 Feng Gao 
 feng.gao@usda.gov

 Joseph G. Alfieri 
 joe.alfieri@usda.gov

 Lawrence E. Hipps 
 Lawrence.Hipps@usu.edu

https://doi.org/10.3390/rs13152887
https://doi.org/10.3390/rs13152887
https://doi.org/10.1007/s00271-018-0611-y
https://doi.org/10.1007/s00271-018-0611-y
https://doi.org/10.1007/s00271-018-0585-9
https://doi.org/10.1007/s00271-018-0585-9
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1007/s00271-019-00621-x
https://doi.org/10.1016/j.agee.2004.10.013
https://doi.org/10.1007/BF00709229
https://doi.org/10.1007/BF00709229
https://doi.org/10.1016/0168-1923(94)02209-3
https://doi.org/10.1126/science.148.3668.339
https://doi.org/10.1126/science.148.3668.339
https://doi.org/10.1016/0002-1571(82)90057-7
https://doi.org/10.1016/0002-1571(82)90057-7
https://doi.org/10.1002/qj.49711146910
https://doi.org/10.1016/j.rse.2005.09.005
https://doi.org/10.3390/rs9040317
https://doi.org/10.1016/0168-1923(94)05082-H
https://doi.org/10.1016/j.agrformet.2008.03.002
https://doi.org/10.1016/j.agrformet.2008.03.002
https://doi.org/10.20870/oeno-one.2009.43.3.798
https://doi.org/10.20870/oeno-one.2009.43.3.798
https://doi.org/10.5194/bg-18-13-2021
https://doi.org/10.5194/bg-18-13-2021
https://doi.org/10.1016/j.agrformet.2021.108790
https://doi.org/10.1016/j.agrformet.2021.108790
https://doi.org/10.3389/fpls.2018.00992
https://doi.org/10.3389/fpls.2018.00992
http://orcid.org/0000-0003-4250-6424


713Irrigation Science (2022) 40:697–713 

1 3

 John H. Prueger 
 john.prueger@usda.gov

 Lynn G. McKee 
 Lynn.McKee@ars.usda.gov

 Einara Zahn 
 einaraz@princeton.edu

 Elie Bou-Zeid 
 ebouzeid@princeton.edu

 Andrew J. McElrone 
 andrew.mcelrone@usda.gov

 Sebastian J. Castro 
 sjcastro@ucdavis.edu

 Nick Dokoozlian 
 Nick.Dokoozlian@ejgallo.com

1 COMPLUTIG, 28801 Alcalá de Henares, Spain
2 Institute of Agricultural Sciences, CSIC, 28006 Madrid, 

Spain

3 Winegrowing Research, E & J Gallo Winery, Modesto, CA, 
USA

4 Hydrology and Remote Sensing Laboratory, USDA-ARS, 
Beltsville, MD 20705, USA

5 Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, 
Spain

6 Department of Land, Air and Water Resources, University 
of California, Davis, CA, USA

7 Department of Plants Soils and Climate, Utah State 
University, Logan, UT, USA

8 National Laboratory for Agriculture and the Environment, 
USDA-ARS, Ames, IA, USA

9 Department of Civil and Environmental Engineering, 
Princeton University, Princeton, NJ, USA

10 Crops Pathology and Genetics Research Unit, USDA-ARS, 
Davis, CA, USA

11 Department of Viticulture and Enology, University 
of California, Davis, CA, USA


	Evaluating different metrics from the thermal-based two-source energy balance model for monitoring grapevine water stress
	Abstract
	Introduction
	Materials and methods
	Crop stress metrics
	Sensitivity of stomatal conductance to vapour pressure deficit
	Shuttleworth–Wallace model

	Priestley–Taylor two source energy balance model
	Inversion of actual stomatal conductance

	Study site
	Flux data
	Physiological data
	Root zone soil moisture data

	TSEB implementation

	Results
	Bulk surface fluxes
	Canopy fluxes
	Stress metrics

	Discussion
	Conclusions
	Acknowledgements 
	References




