2,241 research outputs found

    Carbon-rich dust production in metal-poor galaxies in the Local Group

    Get PDF
    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.Comment: ApJ, in press, 21 pages, 12 figures. Replaced Fig 12, corrected two reference

    Hubble Space Telescope imaging of the compact elliptical galaxy M32 reveals a dearth of carbon stars

    Get PDF
    We present new {\em Hubble Space Telescope} WFC3/IR medium-band photometry of the compact elliptical galaxy M32, chemically resolving its thermally pulsating asymptotic giant branch stars. We find 2829 M-type stars and 57 C stars. The carbon stars are likely contaminants from M31. If carbon stars are present in M32 they are so in very low numbers. The uncorrected C/M ratio is 0.020 ±\pm 0.003; this drops to less than 0.007 after taking into account contamination from M31. As the mean metallicity of M32 is just below solar, this low ratio of C to M stars is unlikely due to a metallicity ceiling for the formation of carbon stars. Instead, the age of the AGB population is likely to be the primary factor. The ratio of AGB to RGB stars in M32 is similar to that of the inner disc of M31 which contain stars that formed 1.5--4 Gyr ago. If the M32 population is at the older end of this age then its lack of C-stars may be consistent with a narrow mass range for carbon star formation predicted by some stellar evolution models. Applying our chemical classifications to the dusty variable stars identified with {\em Spitzer}, we find that the x-AGB candidates identified with {\em Spitzer} are predominately M-type stars. This substantially increases the lower limit to the cumulative dust-production rate in M32 to >> 1.97 ×10−5\times 10^{-5} M⊙ yr−1{\rm M}_{\odot} \, {\rm yr}^{-1}.Comment: 10 pages, 7 figures, submitted MNRAS 7/12/2

    Fundamental parameters, integrated RGB mass loss and dust production in the Galactic globular cluster 47 Tucanae

    Full text link
    Fundamental parameters and time-evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung--Russell diagram. We confirm the cluster's distance as 4611 (+213, -200) pc and age as 12 +/- 1 Gyr. Horizontal branch models appear to confirm that no more RGB mass loss occurs in 47 Tuc than in the more-metal-poor omega Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars which exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of ~ 1000 Lsun, becoming ubiquitous above 2000 Lsun. Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.Comment: 22 pages, 17 figures, accepted ApJ

    Carbon enrichment of the evolved stars in the Sagittarius dwarf spheroidal

    Full text link
    We present spectra of 1142 colour-selected stars in the direction of the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy, of which 1058 were taken with VLT/FLAMES multi-object spectrograph and 84 were taken with the SAAO Radcliffe 1.9-m telescope grating spectrograph. Spectroscopic membership is confirmed (at >99% confidence) for 592 stars on the basis of their radial velocity, and spectral types are given. Very slow rotation is marginally detected around the galaxy's major axis. We identify five S stars and 23 carbon stars, of which all but four carbon stars are newly-determined and all but one (PQ Sgr) are likely Sgr dSph members. We examine the onset of carbon-richness in this metal-poor galaxy in the context of stellar models. We compare the stellar death rate (one star per 1000-1700 years) to known planetary nebula dynamical ages and find that the bulk population produce the observed (carbon-rich) planetary nebulae. We compute average lifetimes of S and carbon stars as 60-250 and 130-500 kyr, compared to a total thermal-pulsing asymptotic giant branch lifetime of 530-1330 kyr. We conclude by discussing the return of carbon-rich material to the ISM.Comment: 14 pages, 10 figures, accepted MNRA

    Discovery of long-period variable stars in the very-metal-poor globular cluster M15

    Full text link
    We present a search for long-period variable (LPV) stars among giant branch stars in M15 which, at [Fe/H] ~ -2.3, is one of the most metal-poor Galactic globular clusters. We use multi-colour optical photometry from the 0.6-m Keele Thornton and 2-m Liverpool Telescopes. Variability of delta-V ~ 0.15 mag is detected in K757 and K825 over unusually-long timescales of nearly a year, making them the most metal-poor LPVs found in a Galactic globular cluster. K825 is placed on the long secondary period sequence, identified for metal-rich LPVs, though no primary period is detectable. We discuss this variability in the context of dust production and stellar evolution at low metallicity, using additional spectra from the 6.5-m Magellan (Las Campanas) telescope. A lack of dust production, despite the presence of gaseous mass loss raises questions about the production of dust and the intra-cluster medium of this cluster.Comment: 13 pages, 9 figures, accepted by MNRA

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
    • …
    corecore