4,717 research outputs found

    Junior Recital: Cole McDonald, horn

    Get PDF
    Kennesaw State University School of Music presents a Junior Recital: Cole McDonald, horn.https://digitalcommons.kennesaw.edu/musicprograms/1759/thumbnail.jp

    Redshift distortions in one-dimensional power spectra

    Full text link
    We present a model for one-dimensional (1D) matter power spectra in redshift space as estimated from data provided along individual lines of sight. We derive analytic expressions for these power spectra in the linear and nonlinear regimes, focusing on redshift distortions arising from peculiar velocities. In the linear regime, redshift distortions enhance the 1D power spectra only on small scales, and do not affect the power on large scales. This is in contrast to the effect of distortions on three-dimensional (3D) power spectra estimated from data in 3D space, where the enhancement is independent of scale. For CDM cosmologies, the 1D power spectra in redshift and real space are similar for wavenumbers q<0.1h/Mpcq<0.1h/Mpc where both have a spectral index close to unity, independent of the details of the 3D power spectrum. Nonlinear corrections drive the 1D power spectrum in redshift space into a nearly universal shape over scale q<10h/Mpcq<10h/Mpc, and suppress the power on small scales as a result of the strong velocity shear and random motions. The redshift space, 1D power spectrum is mostly sensitive to the amplitude of the initial density perturbations. Our results are useful in particular for power spectra computed from the SDSS quasars sample.Comment: MNRAS in press. matches published versio

    Non-Gaussian halo bias and future galaxy surveys

    Get PDF
    We forecast constraints on primordial non-Gaussianity achievable from forthcoming surveys by exploiting the scale-dependent halo bias introduced on large scales by non-Gaussian initial conditions. We explore the performance of exploiting both the shape of the galaxy power-spectrum on large scales and the cross-correlation of galaxies with Cosmic Microwave Background maps through the Integrated Sachs Wolfe effect. We find that future surveys can detect primordial non-Gaussianity of the local form with a non-Gaussianity parameter ∣fNL∣|f_{\rm NL}| of order unity. This is particularly exciting because, while the simplest single-field slow-roll models of inflation predict a primordial ∣fNL∣≪1|f_{\rm NL}|\ll 1, this signal sources extra contributions to the effective fNLf_{\rm NL} of large-scale structures that are expected to be above our predicted detection threshold.Comment: 5pages, 1 Table, typos correcte

    High variability within pet foods prevents the identification of native species in pet cats' diets using isotopic evaluation

    Get PDF
    Domestic cats preying on wildlife is a frequent conservation concern but typical approaches for assessing impacts rely on owner reports of prey returned home, which can be biased by inaccurate reporting or by cats consuming prey instead of bringing it home. Isotopes offer an alternative way to quantify broad differences in animal diets. By obtaining samples of pet food from cat owners we predicted that we would have high power to identify cats feeding on wild birds or mammals, given that pet food is thought to have higher C isotope values, due to the pervasive use of corn and/or corn by-products as food ingredients, than native prey. We worked with citizen scientists to quantify the isotopes of 202 cat hair samples and 239 pet food samples from the US and UK. We also characterized the isotopes of 11 likely native prey species from the southeastern US and used mixing models to assess the diet of 47 cats from the same region. Variation in C and N isotope values for cat food was very high, even within the same brand/flavor, suggesting that pet food manufacturers use a wide range of ingredients, and that these may change over time. Cat food and cat hair from the UK had lower C values than the US, presumably reflecting differences in the amount of corn used in the food chains of the two countries. This high variation in pet food reduced our ability to classify cats as hunters of native prey, such that only 43% of the animals could be confidently assigned. If feral or free ranging cats were considered, this uncertainty would be even higher as pet food types would be unknown. Our results question the general assumption that anthropogenic foods always have high C isotope values, because of the high variability we documented within one product type (cat food) and between countries (US vs. UK), and emphasize the need to test a variety of standards before making conclusions from isotope ecology studies

    Head-mounted accelerometry accurately detects prey capture in California sea lions

    Get PDF
    Detecting when and where animals feed is key to understanding their ecophysiology, but our ability to collect these data in marine mammals remains limited. Here, we test a tag-based accelerometry method to detect prey capture in California sea lions. From synchronized underwater video and acceleration data of two trained sea lions, we isolated a combined acceleration and Jerk pattern that reliably indicated prey capture in training datasets. We observed a stereotyped feeding motion in underwater video that included (1) mouth opening while approaching prey; (2) head deceleration to allow initial suction or prey engulfment, and (3) jaw closure. This motion (1–3) was repeated if a prey item was not initially engulfed. This stereotyped feeding motion informed a signal pattern phrase that accurately detected feeding in a training dataset. This phrase required (1) an initial heave-axis Jerk signal surpassing a threshold based on sampling rate; (2) an estimated dynamic surge-axis deceleration signal surpassing −0.7 g beginning within 0.2 s of the initial Jerk signal; and (3) an estimated dynamic surge-axis acceleration signal surpassing 1.0 g within 0.5 s of the beginning of the prior deceleration signal. We built an automated detector in MATLAB to identify and quantify these patterns. Blind tests of this detector on non-training datasets found high true-positive detection rates (91%–100%) with acceleration sampled at 50–333 Hz and low false-positive detection rates (0%–4.8%) at all sampling rates (16–333 Hz). At 32 Hz and below, true-positive detection rates decreased due to attenuation of signal detail. A detector optimized for an adult female was also accurate at 32–100 Hz when tested on an adult male’s data, suggesting the potential future use of a generalized detector in wild subjects. When tested on the same data, a published triaxial Jerk method produced high true-positive detection rates (91–100%) and low-to-moderate false-positive detection rates (15–43%) at ≥ 32 Hz. Using our detector, larger prey elicited longer prey capture duration in both animals at almost all sampling rates 32 Hz or faster. We conclude that this method can accurately detect feeding and estimate relative prey length in California sea lions

    Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter

    Full text link
    We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order corrections which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of \mu, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of \mu and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion.Comment: 37 pages, 13 figures, published in JCA

    Herps at height: Records of seven species utilizing the upper canopy in northwestern Ecuador

    Get PDF
    Canopy science has not developed as rapidly as other fields due to the inherent difficulty of accessing this ecosystem. Using a blend of industrial and arboricultural rope access techniques, we confirmed occurrences in the canopy of five reptile and two amphibian species in the Chocóan forests of northwestern Ecuador. RESUMEN La investigación en el dosel no se ha desarrollado con la misma velocidad que otras áreas debido a la inaccesibilidad de este ecosistema. Utilizando una combinación de técnicas de acceso con cuerdas de arboricultura e industria, confirmamos la ocurrencia del dosel de cinco especies de reptiles y dos especies de anfibios en los bosques del Chocó del noroccidente del Ecuador

    Non-Gaussian errors of baryonic acoustic oscillations

    Full text link
    We revisit the uncertainty in baryon acoustic oscillation (BAO) forecasts and data analyses. In particular, we study how much the uncertainties on both the measured mean dilation scale and the associated error bar are affected by the non-Gaussianity of the non-linear density field. We examine two possible impacts of non-Gaussian analysis: (1) we derive the distance estimators from Gaussian theory, but use 1000 N-Body simulations to measure the actual errors, and compare this to the Gaussian prediction, and (2) we compute new optimal estimators, which requires the inverse of the non-Gaussian covariance matrix of the matter power spectrum. Obtaining an accurate and precise inversion is challenging, and we opted for a noise reduction technique applied on the covariance matrices. By measuring the bootstrap error on the inverted matrix, this work quantifies for the first time the significance of the non-Gaussian error corrections on the BAO dilation scale. We find that the variance (error squared) on distance measurements can deviate by up to 12% between both estimators, an effect that requires a large number of simulations to be resolved. We next apply a reconstruction algorithm to recover some of the BAO signal that had been smeared by non-linear evolution, and we rerun the analysis. We find that after reconstruction, the rms error on the distance measurement improves by a factor of ~1.7 at low redshift (consistent with previous results), and the variance ({\sigma}^2) shows a change of up to 18% between optimal and sub-optimal cases (note, however, that these discrepancies may depend in detail on the procedure used to isolate the BAO signal). We finally discuss the impact of this work on current data analyses.Comment: 13 pages, 11 figures, MNRAS accepte

    Fast, large volume, GPU enabled simulations for the Ly-alpha forest: power spectrum forecasts for baryon acoustic oscillation experiments

    Full text link
    High redshift measurements of the baryonic acoustic oscillation scale (BAO) from large Ly-alpha forest surveys represent the next frontier of dark energy studies. As part of this effort, efficient simulations of the BAO signature from the Ly-alpha forest will be required. We construct a model for producing fast, large volume simulations of the Ly-alpha forest for this purpose. Utilising a calibrated semi-analytic approach, we are able to run very large simulations in 1 Gpc^3 volumes which fully resolve the Jeans scale in less than a day on a desktop PC using a GPU enabled version of our code. The Ly-alpha forest spectra extracted from our semi-analytical simulations are in excellent agreement with those obtained from a fully hydrodynamical reference simulation. Furthermore, we find our simulated data are in broad agreement with observational measurements of the flux probability distribution and 1D flux power spectrum. We are able to correctly recover the input BAO scale from the 3D Ly-alpha flux power spectrum measured from our simulated data, and estimate that a BOSS-like 10^4 deg^2 survey with ~15 background sources per square degree and a signal-to-noise of ~5 per pixel should achieve a measurement of the BAO scale to within ~1.4 per cent. We also use our simulations to provide simple power-law expressions for estimating the fractional error on the BAO scale on varying the signal-to-noise and the number density of background sources. The speed and flexibility of our approach is well suited for exploring parameter space and the impact of observational and astrophysical systematics on the recovery of the BAO signature from forthcoming large scale spectroscopic surveys.Comment: 16 pages, 11 figures, accepted to MNRA
    • …
    corecore