682 research outputs found

    That\u27s Why I Stole A Kiss From You

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6521/thumbnail.jp

    Are solar neutrino oscillations robust?

    Get PDF
    The robustness of the large mixing angle (LMA) oscillation (OSC) interpretation of the solar neutrino data is considered in a more general framework where non-standard neutrino interactions (NSI) are present. Such interactions may be regarded as a generic feature of models of neutrino mass. The 766.3 ton-yr data sample of the KamLAND collaboration are included in the analysis, paying attention to the background from the reaction ^13C(\alpha,n) ^16O. Similarly, the latest solar neutrino fluxes from the SNO collaboration are included. In addition to the solution which holds in the absence of NSI (LMA-I) there is a 'dark-side' solution (LMA-D) with sin^2 theta_Sol = 0.70, essentially degenerate with the former, and another light-side solution (LMA-0) allowed only at 97% CL. More precise KamLAND reactor measurements will not resolve the ambiguity in the determination of the solar neutrino mixing angle theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on the complementary role of atmospheric, laboratory (e.g. CHARM) and future solar neutrino experiments in lifting the degeneracy between the LMA-I and LMA-D solutions. In particular, we show how the LMA-D solution induced by the simplest NSI between neutrinos and down-type-quarks-only is in conflict with the combination of current atmospheric data and data of the CHARM experiment. We also mention that establishing the issue of robustness of the oscillation picture in the most general case will require further experiments, such as those involving low energy solar neutrinos.Comment: 13 pages, 6 figures; Final version to appear in JHE

    Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning

    Full text link
    An exact analytical solution is given for the critical state problem in long thin superconductor strips in a perpendicular magnetic field, when the critical current density j_c(B) depends on the local induction B according to a simple three-parameter model. This model describes both isotropic superconductors with this j_c(B) dependence, but also superconductors with anisotropic pinning described by a dependence j_c(theta) where theta is the tilt angle of the flux lines away from the normal to the specimen plane

    A simple inert model solves the little hierarchy problem and provides a dark matter candidate

    Full text link
    We discuss a minimal extension to the standard model in which two singlet scalar states that only interacts with the Higgs boson is added. Their masses and interaction strengths are fixed by the two requirements of canceling the one-loop quadratic corrections to the Higgs boson mass and providing a viable dark matter candidate. Direct detection of the lightest of these new states in nuclear scattering experiments is possible with a cross section within reach of future experiments.Comment: Finite corrections included. Model modified. Conclusion unchange

    The Minimal Model of Nonbaryonic Dark Matter: A Singlet Scalar

    Full text link
    We propose the simplest possible renormalizable extension of the Standard Model - the addition of just one singlet scalar field - as a minimalist model for non-baryonic dark matter. Such a model is characterized by only three parameters in addition to those already appearing within the Standard Model: a dimensionless self-coupling and a mass for the new scalar, and a dimensionless coupling, \lambda, to the Higgs field. If the singlet is the dark matter, these parameters are related to one another by the cosmological abundance constraint, implying that the coupling of the singlet to the Higgs field is large, \lambda \sim O(0.1 - 1). Since this parameter also controls couplings to ordinary matter, we obtain predictions for the elastic cross section of the singlet with nuclei. The resulting scattering rates are close to current limits from both direct and indirect searches. The existence of the singlet also has implications for current Higgs searches, as it gives a large contribution to the invisible Higgs width for much of parameter space. These scalars can be strongly self-coupled in the cosmologically interesting sense recently proposed by Spergel and Steinhardt, but only for very low masses (< 1 GeV), which is possible only at the expense of some fine-tuning of parameters.Comment: 26 pages, latex. Minor revisions, few references adde

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    A new quantum fluid at high magnetic fields in the marginal charge-density-wave system α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (where M=M=~K and Rb)

    Full text link
    Single crystals of the organic charge-transfer salts α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 have been studied using Hall-potential measurements (M=M=K) and magnetization experiments (MM = K, Rb). The data show that two types of screening currents occur within the high-field, low-temperature CDWx_x phases of these salts in response to time-dependent magnetic fields. The first, which gives rise to the induced Hall potential, is a free current (jfree{\bf j}_{\rm free}), present at the surface of the sample. The time constant for the decay of these currents is much longer than that expected from the sample resistivity. The second component of the current appears to be magnetic (jmag{\bf j}_{\rm mag}), in that it is a microscopic, quasi-orbital effect; it is evenly distributed within the bulk of the sample upon saturation. To explain these data, we propose a simple model invoking a new type of quantum fluid comprising a CDW coexisting with a two-dimensional Fermi-surface pocket which describes the two types of current. The model and data are able to account for the body of previous experimental data which had generated apparently contradictory interpretations in terms of the quantum Hall effect or superconductivity.Comment: 13 pages, 11 figure

    Direct detection of Higgs-portal dark matter at the LHC

    Get PDF
    We consider the process in which a Higgs particle is produced in association with jets and show that monojet searches at the LHC already provide interesting constraints on the invisible decays of a 125 GeV Higgs boson. Using the existing monojet searches performed by CMS and ATLAS, we show the 95% confidence level limit on the invisible Higgs decay rate is of the order of the total Higgs production rate in the Standard Model. This limit could be significantly improved when more data at higher center of mass energies are collected, provided systematic errors on the Standard Model contribution to the monojet background can be reduced. We also compare these direct constraints on the invisible rate with indirect ones based on measuring the Higgs rates in visible channels. In the context of Higgs portal models of dark matter, we then discuss how the LHC limits on the invisible Higgs branching fraction impose strong constraints on the dark matter scattering cross section on nucleons probed in direct detection experiments.Comment: 6 pages, 3 figures; v2: references added; v3: monojet and Higgs data updated, version published in EPJ

    Overcritical states of a superconductor strip in a magnetic environment

    Full text link
    A current-carrying superconducting strip partly penetrated by magnetic flux and surrounded by a bulk magnet of high permeability is considered. Two types of samples are studied: those with critical current controlled by an edge barrier dominating over the pinning, and those with high pinning-mediated critical current masking the edge barrier.It is shown for both cases that the current distribution in a central flux-free part of the strip is strongly affected by the actual shape of the magnetic surroundings. Explicit analytical solutions for the sheet current and self-field distributions are obtained which show that, depending on the geometry, the effect may suppress the total loss-free transport current of the strip or enhance it by orders of magnitude. The effect depends strongly on the shape of the magnet and its distance to the superconductor but only weakly on the magnetic permeability.Comment: 20 pages, 20 figure

    A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing

    Get PDF
    RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a ligand-engaged zebrafish RETECD-GDNF-GFRα1a complex indicates conformational changes within a clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognizes a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualize linear arrays of RETECD-GDNF-GFRα1a suggesting that a conserved contact stabilizes higher-order species. Our study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands
    corecore