127 research outputs found

    Fine‐scale seascape genomics of an exploited marine species, the common cockle Cerastoderma edule, using a multimodelling approach

    Get PDF
    Population dynamics of marine species that are sessile as adults are driven by oceanographic dispersal of larvae from spawning to nursery grounds. This is mediated by life-history traits such as the timing and frequency of spawning, larval behaviour and duration, and settlement success. Here, we use 1725 single nucleotide polymorphisms (SNPs) to study the fine scale spatial genetic structure in the commercially important cockle species Cerastoderma edule and compare it to environmental variables and current-mediated larval dispersal within a modelling framework. Hydrodynamic modelling employing the NEMO Atlantic Margin Model (AMM15) was used to simulate larval transport and estimate connectivity between populations during spawning months (April - September), factoring in larval duration and inter-annual variability of ocean currents. Results at neutral loci reveal the existence of three separate genetic clusters (mean FST=0.021) within a relatively fine spatial scale in the northwest Atlantic. Environmental Association analysis indicates that oceanographic currents and geographical proximity explain over 20% of the variance observed at neutral loci, while genetic variance (71%) at outlier loci was explained by sea surface temperatures extremes. These results fill an important knowledge gap in the management of a commercially important and overexploited species, bringing us closer to understanding the role of larval dispersal in connecting populations at a fine geographical scale

    Ecogeographical patterns of morphological variation in pygmy shrews Sorex minutus (Soricomorpha: Soricinae) within a phylogeographic and continental-and-island framework

    Get PDF
    Ecogeographical patterns of morphological variation were studied in the Eurasian pygmy shrew Sorex minutus to understand the species’ morphological diversity in a continental and island setting, and within the context of previous detailed phylogeographic studies. In total, 568 mandibles and 377 skulls of S. minutus from continental and island populations from Europe and Atlantic islands were examined using a geometric morphometrics approach, and the general relationships of mandible and skull size and shape with geographical and environmental variables was studied. Samples were then pooled into predefined geographical groups to evaluate the morphological differences among them using analyses of variance, to contrast the morphological and genetic relationships based on morphological and genetic distances and ancestral state reconstructions, and to assess the correlations of morphological, genetic and geographic distances with Mantel tests. We found significant relationships of mandible size with geographic and environmental variables, fitting the converse Bergmann’s rule; however, for skull size this was less evident. Continental groups of S. minutus could not readily be differentiated from each other by shape. Most island groups of S. minutus were easily discriminated from the continental groups by being larger, indicative of an island effect. Moreover, morphological and genetic distances differed substantially, and again island groups were distinctive morphologically. Morphological and geographical distances were significantly correlated, but not so the morphological and genetic distances indicating that morphological variation does not reflect genetic subdivision in S. minutus. Our analyses showed that environmental variables and insularity had important effects on the morphological differentiation of S. minutus

    Snapshot of the Atlantic Forest canopy: surveying arboreal mammals in a biodiversity hotspot

    Get PDF
    The Atlantic Forest of South America supports a rich terrestrial biodiversity but has been reduced to only a small extent of its original forest cover. It hosts a large number of endemic mammalian species but our knowledge of arboreal mammal ecology and conservation has been limited because of the challenges of observing arboreal species from ground level. Camera trapping has proven to be an effective tool in terrestrial mammal monitoring but the technique has rarely been used for arboreal species. For the first time in the Atlantic Forest, we obtained data on the arboreal mammal community using arboreal camera trapping, focusing on Caparaó National Park, Brazil. We placed 24 infrared camera traps in the forest canopy in seven areas within the Park, operating them continuously during January 2017–June 2019. During this period the camera traps accumulated 4,736 camera-days of footage and generated a total of 2,256 photographs and 30-s videos of vertebrates. The arboreal camera traps were able to detect arboreal mammals of a range of body sizes. The mammal assemblage comprised 15 identifiable species, including the Critically Endangered northern muriqui Brachyteles hypoxanthus and buffy-headed marmoset Callithrix flaviceps as well as other rare, nocturnal and inconspicuous species. We confirmed for the first time the occurrence of the thin-spined porcupine Chaetomys subspinosus in the Park. Species richness varied across survey areas and forest types. Our findings demonstrate the potential of arboreal camera trapping to inform conservation strategies

    Invasive genetic rescue: dispersal following repeated culling reinforces the genetic diversity of an invasive mammal

    Get PDF
    Since its introduction from the United States in 1876, the invasive North American Eastern grey squirrel (Sciurus carolinensis) has contributed to the decline of the native Eurasian red squirrel (Sciurus vulgaris) in Britain. The aim of this study was to assess the overall impact of repeated control efforts carried out between 2011 and 2020 on the genetic diversity of the grey squirrel population in north Wales. This information can be used to inform future adaptive management plans, increasing the success of invasive species control efforts and enhancing red squirrel conservation efforts. Using a combination of mitochondrial DNA (mtDNA) and microsatellite DNA analysis, we found high genetic diversity in both marker types, with six diverse mtDNA haplotypes found and relatively high levels of nuclear genetic diversity, even after repeated culling efforts. We also found that repeated introductions from multiple locations in North America have generated a genetically diverse population in Britain today, compounding the management of this invasive species. Our results suggest that ongoing grey squirrel control efforts may not adequately reduce genetic diversity to a level where it contributes to a long-term population decline, and highlights the need to gather all available information, including historical and contemporary, to effectively create a plan for control efforts of invasive species

    Resource competition drives an invasion-replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white-toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services

    Shark‐dust: Application of high‐throughput DNA sequencing of processing residues for trade monitoring of threatened sharks and rays

    Get PDF
    Illegal fishing, unregulated bycatch, and market demand for certain products (e.g., fins) are largely responsible for the rapid global decline of shark and ray populations. Controlling trade of endangered species remains difficult due to product variety, taxonomic ambiguity, and trade complexity. The genetic tools traditionally used to identify traded species typically target individual tissue samples, and are time-consuming and/or species-specific. Here, we performed high-throughput sequencing of trace DNA fragments retrieved from dust and scraps left behind by trade activities. We metabarcoded “shark-dust” samples from seven processing plants in the world's biggest shark landing site (Java, Indonesia), and identified 61 shark and ray taxa (representing half of all chondrichthyan orders), more than half of which could not be recovered from tissue samples collected in parallel from the same sites. Importantly, over 80% of shark-dust sequences were found to belong to CITES-listed species. We argue that this approach is likely to become a powerful and cost-effective monitoring tool wherever wildlife is traded

    Seasonal development of a tidal mixing front drives shifts in community structure and diversity of bacterioplankton

    Get PDF
    Bacterioplankton underpin biogeochemical cycles and an improved understanding of the patterns and drivers of variability in their distribution is needed to determine their wider functioning and importance. Sharp environmental gradients and dispersal barriers associated with ocean fronts are emerging as key determinants of bacterioplankton biodiversity patterns. We examined how the development of the Celtic Sea Front (CF), a tidal mixing front on the Northwest European Shelf affects bacterioplankton communities. We performed 16S‐rRNA metabarcoding on 60 seawater samples collected from three depths (surface, 20 m and seafloor), across two research cruises (May and September 2018), encompassing the intra‐annual range of the CF intensity. Communities above the thermocline of stratified frontal waters were clearly differentiated and less diverse than those below the thermocline and communities in the well‐mixed waters of the Irish Sea. This effect was much more pronounced in September, when the CF was at its peak intensity. The stratified zone likely represents a stressful environment for bacterioplankton due to a combination of high temperatures and low nutrients, which fewer taxa can tolerate. Much of the observed variation was driven by Synechococcus spp. (cyanobacteria), which were more abundant within the stratified zone and are known to thrive in warm oligotrophic waters. Synechococcus spp. are key contributors to global primary productivity and carbon cycling and, as such, variability driven by the CF is likely to influence regional biogeochemical processes. However, further studies are required to explicitly link shifts in community structure to function and quantify their wider importance to pelagic ecosystems
    • …
    corecore