44 research outputs found

    Protein Modification by Deamidation Indicates Variations in Joint Extracellular Matrix Turnover

    Get PDF
    As extracellular proteins age, they undergo and accumulate nonenzymatic post-translational modifications that cannot be repaired. We hypothesized that these could be used to systemically monitor loss of extracellular matrix due to chronic arthritic diseases such as osteoarthritis (OA). To test this, we predicted sites of deamidation in cartilage oligomeric matrix protein (COMP) and confirmed, by mass spectroscopy, the presence of deamidated (Asp64) and native (Asn64) COMP epitopes (mean 0.95% deamidated COMP (D-COMP) relative to native COMP) in cartilage. An Asp64, D-COMP-specific ELISA was developed using a newly created monoclonal antibody 6-1A12. In a joint replacement study, serum D-COMP (p = 0.017), but not total COMP (p = 0.5), declined significantly after replacement demonstrating a joint tissue source for D-COMP. In analyses of 450 participants from the Johnston County Osteoarthritis Project controlled for age, gender, and race, D-COMP was associated with radiographic hip (p < 0.0001) but not knee (p = 0.95) OA severity. In contrast, total COMP was associated with radiographic knee (p < 0.0001) but not hip (p = 0.47) OA severity. D-COMP was higher in soluble proteins extracted from hip cartilage proximal to OA lesions compared with remote from lesions (p = 0.007) or lesional and remote OA knee (p < 0.01) cartilage. Total COMP in cartilage did not vary by joint site or proximity to the lesion. This study demonstrates the presence of D-COMP in articular cartilage and the systemic circulation, and to our knowledge, it is the first biomarker to show specificity for a particular joint site. We believe that enrichment of deamidated epitope in hip OA cartilage indicates a lesser repair response of hip OA compared with knee OA cartilage

    STC1 and PTHrP modify carbohydrate and lipid metabolism in liver of a teleost fish

    Get PDF
    Stanniocalcin 1 (STC1) and parathyroid hormone-related protein (PTHrP) are calciotropic hormones in vertebrates. Here, a recently hypothesized metabolic role for these hormones is tested on European sea bass treated with: (i) teleost PTHrP(1-34), (ii) PTHrP(1-34) and anti-STC1 serum (pro-PTHrP groups), (iii) a PTHrP antagonist PTHrP(7-34) or (iv) PTHrP(7-34) and STC1 (pro-STC1 groups). Livers were analysed using untargeted metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectroscopy. Concentrations of branched-chain amino acid (BCAA), alanine, glutamine and glutamate increased in pro-STC1 groups suggesting their mobilization from the muscle to the liver for degradation and gluconeogenesis from alanine and glutamine. In addition, only STC1 treatment decreased the concentrations of succinate, fumarate and acetate, indicating slowing of the citric acid cycle. In the pro-PTHrP groups the concentrations of glucose, erythritol and lactate decreased, indicative of gluconeogenesis from lactate. Taurine, trimethylamine, trimethylamine N-oxide and carnitine changed in opposite directions in the pro-STC1 versus the pro-PTHrP groups, suggesting opposite effects, with STC1 stimulating lipogenesis and PTHrP activating lipolysis/ÎČ-oxidation of fatty acids. These findings suggest a role for STC1 and PTHrP related to strategic energy mechanisms that involve the production of glucose and safeguard of liver glycogen reserves for stressful situations.Portuguese Foundation for Science and Technology (FCT) SFRH/BD/103185/2014info:eu-repo/semantics/publishedVersio

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (‘‘GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    GoLoco motif proteins binding to Gαi1: insights from molecular simulations

    Get PDF
    Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the Gαi1/GoLoco peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the Gαi1 subunit was found to restrict the relative movement of the helical and catalytic domains in the Gαi1 subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of Gα, the conformation of which might be important for interactions with various Gα partners

    Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12

    Get PDF
    Purpose: To investigate the natural history of Stargardt disease (STGD1) using fixation location and fixation stability. // Design: Multicenter, international, prospective cohort study. // Methods: Fixation testing was performed using the Nidek MP-1 microperimeter as part of the prospective, multicenter, natural history study on the Progression of Stargardt disease (ProgStar). A total of 238 patients with ABCA4-related STGD1 were enrolled at baseline (bilateral enrollment in 86.6%) and underwent repeat testing at months 6 and 12. // Results: Outcome measures included the distance of the preferred retinal locus from the fovea (PRL) and the bivariate contour ellipse area (BCEA). After 12 months of follow-up, the change in the eccentricity of the PRL from the anatomic fovea was −0.0014 degrees (95% confidence interval [CI], −0.27 degrees, 0.27 degrees; P = .99). The deterioration in the stability of fixation as expressed by a larger BCEA encompassing 1 standard deviation of all fixation points was 1.21 degrees squared (deg2) (95% CI, −1.23 deg2, 3.65 deg2; P = .33). Eyes with increases and decreases in PRL eccentricity and/or BCEA values were observed. // Conclusions: Our observations point to the complexity of fixation parameters. The association of increasingly eccentric and unstable fixation with longer disease duration that is typically found in cross-sectional studies may be countered within individual patients by poorly understood processes like neuronal adaptation. Nevertheless, fixation parameters may serve as useful secondary outcome parameters in selected cases and for counseling patients to explain changes to their visual functionality

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    GPCRs, G-proteins, effectors and their interactions: human-gpDB, a database employing visualization tools and data integration techniques

    Get PDF
    G-protein coupled receptors (GPCRs) are a major family of membrane receptors in eukaryotic cells. They play a crucial role in the communication of a cell with the environment. Ligands bind to GPCRs on the outside of the cell, activating them by causing a conformational change, and allowing them to bind to G-proteins. Through their interaction with G-proteins, several effector molecules are activated leading to many kinds of cellular and physiological responses. The great importance of GPCRs and their corresponding signal transduction pathways is indicated by the fact that they take part in many diverse disease processes and that a large part of efforts towards drug development today is focused on them. We present Human-gpDB, a database which currently holds information about 713 human GPCRs, 36 human G-proteins and 99 human effectors. The collection of information about the interactions between these molecules was done manually and the current version of Human-gpDB holds information for about 1663 connections between GPCRs and G-proteins and 1618 connections between G-proteins and effectors. Major advantages of Human-gpDB are the integration of several external data sources and the support of advanced visualization techniques. Human-gpDB is a simple, yet a powerful tool for researchers in the life sciences field as it integrates an up-to-date, carefully curated collection of human GPCRs, G-proteins, effectors and their interactions. The database may be a reference guide for medical and pharmaceutical research, especially in the areas of understanding human diseases and chemical and drug discovery. Database URLs: http://schneider.embl.de/human_gpdb; http://bioinformatics.biol.uoa.gr/human_gpdb
    corecore