136 research outputs found

    Mouse hypothalamic GT1-7 cells demonstrate AMPK-dependent intrinsic glucose-sensing behaviour.

    Get PDF
    AIMS/HYPOTHESIS: Hypothalamic glucose-excited (GE) neurons contribute to whole-body glucose homeostasis and participate in the detection of hypoglycaemia. This system appears defective in type 1 diabetes, in which hypoglycaemia commonly occurs. Unfortunately, it is at present unclear which molecular components required for glucose sensing are produced in individual neurons and how these are functionally linked. We used the GT1-7 mouse hypothalamic cell line to address these issues. METHODS: Electrophysiological recordings, coupled with measurements of gene expression and protein levels and activity, were made from unmodified GT1-7 cells and cells in which AMP-activated protein kinase (AMPK) catalytic subunit gene expression and activity were reduced. RESULTS: Hypothalamic GT1-7 neurons express the genes encoding glucokinase and ATP-sensitive K(+) channel (K(ATP)) subunits K ( ir ) 6.2 and Sur1 and exhibit GE-type glucose-sensing behaviour. Lowered extracellular glucose concentration hyperpolarised the cells in a concentration-dependent manner, an outcome that was reversed by tolbutamide. Inhibition of glucose uptake or metabolism hyperpolarised cells, showing that energy metabolism is required to maintain their resting membrane potential. Short hairpin (sh)RNA directed to Ampkα2 (also known as Prkaa2) reduced GT1-7 cell AMPKα2, but not AMPKα1, activity and lowered the threshold for hypoglycaemia-induced hyperpolarisation. shAmpkα1 (also known as Prkaa1) had no effect on glucose-sensing or AMPKα2 activity. Decreased uncoupling protein 2 (Ucp2) mRNA was detected in AMPKα2-reduced cells, suggesting that AMPKα2 regulates UCP2 levels. CONCLUSIONS/INTERPRETATION: We have demonstrated that GT1-7 cells closely mimic GE neuron glucose-sensing behaviour, and reducing AMPKα2 blunts their responsiveness to hypoglycaemic challenge, possibly by altering UCP2 activity. These results show that suppression of AMPKα2 activity inhibits normal glucose-sensing behaviour and may contribute to defective detection of hypoglycaemia.This study was funded by: grants from the Wellcome Trust (grant numbers 068692 and 086989) and Diabetes UK (grant number RD08/0003681) to M.L.J. Ashford; a Juvenile Diabetes Research Foundation (JDRF) Postdoctoral Fellowship to C. Beall (grant number 3-576-2010); grants from JDRF and European Foundation for the study of Diabetes to R.J. McCrimmon, and from the British Heart Foundation to A. Jovanović

    Ca2+/Calmodulin-Dependent Protein Kinase Kinase Is Not Involved in Hypothalamic AMP-Activated Protein Kinase Activation by Neuroglucopenia

    Get PDF
    Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca2+/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced Ξ±1 and Ξ±2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 Β΅mol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic Ξ±1 and Ξ±2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK

    Insulin degludec is not associated with a delayed or diminished response to hypoglycaemia compared with insulin glargine in type 1 diabetes: a double-blind randomised crossover study

    Get PDF
    Aims/hypothesis: Insulin degludec (Des(B30)LysB29(Ξ³-Glu NΞ΅-hexadecandioyl) human insulin; IDeg) is a new basal insulin with an ultra-long flat action profile. The acute physiological responses to hypoglycaemia with IDeg and insulin glargine (A21Gly,B31Arg,B32Arg human insulin; IGlar) were compared. Methods: Twenty-eight adult type 1 diabetic patients with normal hypoglycaemia awareness (age = 41 ± 12 years, HbA1c = 7.8 ± 0.6% [62.8 ± 7 mmol/mol]) were randomised to once-daily IDeg or IGlar for 5 days in a two-period crossover design. Participants and research staff were blinded to group assignment. Patients were assigned the lowest available randomisation number from a set of blinded randomisation codes provided by the trial sponsor. Hypoglycaemia was induced by administering three times the usual daily insulin dose at midnight on day 5. Plasma glucose (PG) was stabilised by glucose clamp (5.5 mmol/l) for 7–9 h post dosing. Next morning, PG was allowed to decrease stepwise from 5.5 to 3.5 mmol/l (maintained for 30 min) to 2.5 mmol/l (for 15 min). PG was then increased to 3.9 mmol/l (for 120 min), before being returned to baseline. Hypoglycaemic symptom score (HSS), hypoglycaemic awareness, cognitive function, counter-regulatory hormones and vital signs were assessed during each glucose plateau. The primary analysis was to compare IDeg vs IGlar with respect to HSS at nadir PG concentration (2.5 mmol/l). Results: The full analysis set for treatment comparisons comprised data from all 28 exposed patients. Rates of PG decline and PG at nadir were similar for IDeg and IGlar. No treatment differences in HSS (estimated difference: 0.17 [95% CI βˆ’1.71, 2.05]; p > 0.05), cognitive function or awareness were observed at any time. Growth hormone and cortisol responses during hypoglycaemia were greater with IDeg than IGlar (AUC treatment ratio [IDeg/IGlar]: 2.44 [1.30, 4.60], p < 0.01; and 1.23 [1.01, 1.50]; p < 0.05), and adrenaline (epinephrine) responses trended higher (1.40 [0.96, 2.04], p = 0.07). The rates of recovery from hypoglycaemia were similar. Conclusions/interpretation: IDeg and IGlar elicit comparable symptomatic and cognitive responses to induced hypoglycaemia. IDeg may elicit a moderately greater endocrine response, but times to PG recovery were similar for the two insulins

    Type 2 diabetes, depressive symptoms and trajectories of cognitive decline in a national sample of community-dwellers: a prospective cohort study

    Get PDF
    We examined the individual and synergistic effects of type 2 diabetes and elevated depressive symptoms on memory and executive function trajectories over 10 and eight years of follow-up, respectively. Our sample comprised 10,524 community-dwellers aged β‰₯50 years in 2002Β±03 from the English Longitudinal Study of Ageing. With respect to memory (word recall), participants with either diabetes or elevated depressive symptoms recalled significantly fewer words compared with those free of these conditions (reference category), but more words compared with those with both conditions. There was a significant acceleration in the rate of memory decline in participants aged ≀50Β±64 years with both conditions (-0.27, 95% CI, -0.45 to -0.08, per study wave), which was not observed in those with either condition or aged β‰₯65 years. With respect to executive function (animal naming), participants aged 65 years with diabetes or those with elevated depressive symptoms named significantly fewer animals compared with the reference category, while those with both conditions named fewer animals compared with any other category. The rate of executive function decline was significantly greater in participants with both conditions (-0.54, 95% CI, -0.99 to -0.10; and Β±0.71, 95% CI, -1.16 to -0.27, per study wave, for those aged 50Β±64 and β‰₯65 years, respectively), but not in participants with either condition. Diabetes and elevated depressive symptoms are inversely associated with memory and executive function, but, individually, do not accelerate cognitive decline. The co-occurrence of diabetes and elevated depressive symptoms significantly accelerates cognitive decline over time, especially among those aged 50Β±64 years

    High-normal blood glucose levels may be associated with decreased spatial perception in young healthy adults.

    Get PDF
    The negative effects of high normal glucose on cognitive function were previously reported in euglycemic individuals of middle age and the elderly population. This study aimed at examining the effect of baseline blood glucose levels on spatial ability, specifically verticality perception on the computerized rod and frame test (CRFT) in young healthy adults. 63 healthy male medical students (age range from 18-23 years), of whom 30 were non-fasting outside the month of Ramadan and 33 fasting during Ramadan of the year 2016, were recruited in order to create varying degrees of glycemia during which verticality perception was carried out. Baseline blood glucose reading was obtained prior to commencing the CRFT test. Blood glucose levels at the time of testing decreased as the duration between the last meal and testing increased. A blood glucose range of 62-117 mg/dl was achieved among participants for this study. Linear regression analysis showed that blood glucose level at testing correlated positively with all alignment spatial error parameters, indicating a probable reduction of spatial perception ability with higher blood glucose levels. These results are consistent with other cognitive studies in older healthy humans and emphasize the critical impact of early glucose dys-homeostasis on cognitive function. They also indicate that elevated blood glucose may affect cognitive functioning outside of the usual complications of diabetes

    Does neurocognitive training have the potential to improve dietary self-care in type 2 diabetes? Study protocol of a double blind randomised controlled trial

    Get PDF
    Dietary self-care is a key element of self-management in type 2 diabetes. It is also the most difficult aspect of diabetes self-management. Adhering to long-term dietary goals and resisting immediate food desires requires top-down inhibitory control over subcortical impulsive and emotional responses to food. Practising simple neurocognitive tasks can improve inhibitory control and health behaviours that depend on inhibitory control, such as resisting alcohol consumption. It is yet to be investigated, however, whether neurocognitive training can improve dietary self-care in people with type 2 diabetes. The aim of this randomised controlled trial is to investigate whether web-based neurocognitive training can improve the ability of people with type 2 diabetes to resist tempting foods and better adhere to a healthy dietary regime
    • …
    corecore